
Large Scale Semi-supervised Linear SVMs

Vikas Sindhwani
Department of Computer Science

University of Chicago
Chicago, IL 60637, USA

vikass@cs.uchicago.edu

S. Sathiya Keerthi
Yahoo! Research

Media Studios North
Burbank, CA 91504, USA

selvarak@yahoo-inc.com

ABSTRACT
Large scale learning is often realistic only in a
semi-supervised setting where a small set of labeled exam-
ples is available together with a large collection of unlabeled
data. In many information retrieval and data mining ap-
plications, linear classifiers are strongly preferred because
of their ease of implementation, interpretability and em-
pirical performance. In this work, we present a family of
semi-supervised linear support vector classifiers that are de-
signed to handle partially-labeled sparse datasets with pos-
sibly very large number of examples and features. At their
core, our algorithms employ recently developed modified fi-
nite Newton techniques. Our contributions in this paper
are as follows: (a) We provide an implementation of Trans-
ductive SVM (TSVM) that is significantly more efficient
and scalable than currently used dual techniques, for lin-
ear classification problems involving large, sparse datasets.
(b) We propose a variant of TSVM that involves multiple
switching of labels. Experimental results show that this
variant provides an order of magnitude further improve-
ment in training efficiency. (c) We present a new algorithm
for semi-supervised learning based on a Deterministic An-
nealing (DA) approach. This algorithm alleviates the prob-
lem of local minimum in the TSVM optimization procedure
while also being computationally attractive. We conduct
an empirical study on several document classification tasks
which confirms the value of our methods in large scale semi-
supervised settings.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.5.2 [Pattern
Recognition]: Design Methodology—Classifier design and

evaluation

General Terms
Algorithms, Performance, Experimentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’06,August 6–11, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-369-7/06/0008 ...$5.00.

Keywords
Support Vector Machines, Unlabeled data, Global optimiza-
tion, Text Categorization

1. INTRODUCTION
Consider the following situation: In a single web-crawl,

search engines like Yahoo! and Google index billions of doc-
uments. Only a very small fraction of these documents can
possibly be hand-labeled by human editorial teams and as-
sembled into topic directories. In information retrieval rele-
vance feedback, a user labels a small number of documents
returned by an initial query as being relevant or not. The
remaining documents form a massive collection of unlabeled
data. Despite its natural and pervasive need, solutions to
the problem of utilizing unlabeled data with labeled exam-
ples have only recently emerged in machine learning litera-
ture. Whereas the abundance of unlabeled data is frequently
acknowledged as a motivation in most papers, the true po-
tential of semi-supervised learning in large scale settings is
yet to be systematically explored. This appears to be partly
due to the lack of scalable tools to handle large volumes of
data.

In this paper, we propose extensions of linear Support
Vector Machines (SVMs) for semi-supervised classification.
Linear techniques are often the method of choice in many ap-
plications due to their simplicity and interpretability. When
data appears in a rich high-dimensional representation, lin-
ear functions often provide a sufficiently complex hypothe-
sis space for learning high-quality classifiers. This has been
established, for example, for document classification with
Linear SVMs in numerous studies.

Our methods are motivated by the intuition of margin
maximization for semi-supervised SVMs [13, 5, 1, 6, 3, 4].
The key idea is to bias the classification hyperplane to pass
through a low data density region keeping points in each
data cluster on the same side of the hyperplane while re-
specting labels. This algorithm uses an extended SVM ob-
jective function with a non-convex loss term over the un-
labeled examples to implement the cluster assumption in
semi-supervised learning1. This idea is of historical impor-
tance as one of the first concrete proposals for learning from
unlabeled data; its popular implementation in [5] is consid-
ered state-of-the-art in text categorization, even in the face
of increasing recent competition.

1The assumption that points in a cluster should have similar
labels. The role of unlabeled data is to identify clusters and
high density regions in the input space.

We highlight the main contributions of this paper.
(1) We outline an implementation for a variant of Trans-

ductive SVM [5] designed for linear semi-supervised classifi-
cation on large, sparse datasets. As compared to currently
used dual techniques (e.g in the SVMlight implementation of
TSVM), our method effectively exploits data sparsity and
linearity of the problem to provide superior scalability. Ad-
ditionally, we propose a multiple switching heuristic that
further improves TSVM training by an order of magnitude.
These speed enhancements turn TSVM into a feasible tool
for large scale applications.

(2) We propose a novel algorithm for semi-supervised
SVMs inspired from Deterministic Annealing (DA)
techniques. This approach generates a family of objective
functions whose non-convexity is controlled by an annealing
parameter. The global minimizer is parametrically tracked
in this family. This approach alleviates the problem of local
minima in the TSVM optimization procedure which results
in better solutions on some problems. A computationally
attractive training algorithm is presented that involves a se-
quence of alternating convex optimizations.

(3) We conduct an experimental study on many document
classification tasks with several thousands of examples and
features. This study clearly shows the utility of our tools
for large scale problems.

The modified finite Newton algorithm (abbreviated l2-
SVM-MFN) of Keerthi and Decoste [8] for fast training of
linear SVMs is a key subroutine for our algorithms.

This paper is arranged as follows. In section 2 we describe
the l2-SVM-MFN algorithm and present its semi-supervised
extensions in section 3. Experimental results are reported
in section 4. Section 5 contains some concluding comments.
A more detailed version of this paper is available at [11].

2. MODIFIED FINITE NEWTON LINEAR
L 2-SVM

The modified finite Newton l2-SVM method [8] (l2-SVM-
MFN) is a recently developed training algorithm for Linear
SVMs that is ideally suited to sparse datasets with large
number of examples and possibly large number of features.

Given a binary classification problem with l labeled exam-
ples {xi, yi}

l
i=1 where the input patterns xi ∈ R

d (e.g docu-
ments) and the labels yi ∈ {+1,−1}, l2-SVM-MFN provides
an efficient primal solution to the following SVM optimiza-
tion problem:

w? = argmin
w∈Rd

1

2

lX

i=1

l2(yiw
T xi) +

λ

2
‖w‖2 (1)

where l2 is the l2-SVM loss given by l2(z) = max(0, 1 −
z)2, λ is a real-valued regularization parameter and the final
classifier is given by sign(w?T x).

This objective function differs from the standard SVM
problem in some respects. First, instead of using the hinge
loss as the data fitting term, the square of the hinge loss (or
the so-called quadratic soft margin loss function) is used.
This makes the objective function continuously differentiable,
allowing easier applicability of gradient techniques. Sec-
ondly, the bias term (“b”) is also regularized. In the problem
formulation of Eqn. 1, it is implicitly assumed that an addi-
tional component in the weight vector and a constant feature
in the example vectors have been added to indirectly incor-
porate the bias. This formulation combines the simplicity

of a least squares aspect with algorithmic advantages asso-
ciated with SVMs. We also note that all the discussion in
this paper can be applied to other loss functions such as Hu-
ber’s Loss and rounded Hinge loss using the modifications
outlined in [8].

We consider a version of l2-SVM-MFN where a weighted
quadratic soft margin loss function is used.

min
w

f(w) =
1

2

X

i∈(w)

cil2(yiw
T xi) +

λ

2
‖w‖2 (2)

Here we have rewritten Eqn. 1 in terms of the support vec-
tor set (w) = {i : yi (wT xi) < 1}. Additionally, the loss
associated with the ith example has a cost ci. f(w) refers
to the objective function being minimized, evaluated at a
candidate solution w. Note that if the index set (w) were
independent of w and ran over all data points, this would
simply be the objective function for weighted linear regular-
ized least squares (RLS).

Following [8], we observe that f is a strictly convex, piece-
wise quadratic, continuously differentiable function having
a unique minimizer. The gradient of f at w is given by:

∇ f(w) = λ w + XT
(w)C(w)

ˆ
X(w)w − Y(w)

˜

where X(w) is a matrix whose rows are the feature vectors
of training points corresponding to the index set (w), Y(w)

is a column vector containing labels for these points, and
C(w) is a diagonal matrix that contains the costs ci for
these points along its diagonal.

l2-SVM-MFN is a primal algorithm that uses the New-
ton’s Method for unconstrained minimization of a convex
function. The classical Newton’s method is based on a sec-
ond order approximation of the objective function, and in-
volves updates of the following kind:

wk+1 = wk + δk nk (3)

where the step size δk ∈ R, and the Newton direction nk ∈
R

d is given by: nk = −[∇2 f(wk)]−1∇ f(wk). Here, ∇ f(wk)
is the gradient vector and ∇2 f(wk) is the Hessian matrix of
f at wk. However, the Hessian does not exist everywhere,
since f is not twice differentiable at those weight vectors
w where wT xi = yi for some index i.2 Thus a generalized
definition of the Hessian matrix is used. The modified fi-
nite Newton procedure [8] proceeds as follows. The step
w̄k = wk + nk in the Newton direction can be seen to be
given by solving the following linear system associated with
a weighted linear regularized least squares problem over the
data subset defined by the indices (wk):

h

λI + XT
(wk)C(wk)X(wk)

i

w̄k = XT
(wk)C(wk)Y(wk) (4)

where I is the identity matrix. Once w̄k is obtained, wk+1

is obtained from Eqn. 3 by setting wk+1 = wk +δk(w̄k−wk)
after performing an exact line search for δk, i.e by exactly
solving a one-dimensional minimization problem:

δk = argmin
δ≥0

φ(δ) = f
“

wk + δ(w̄k − wk)
”

(5)

The modified finite Newton procedure has the property of
finite convergence to the optimal solution. The key features

2In the neighborhood of such a w, the index i leaves or enters
(w). However, at w, yiw

T xi = 1. So f is continuously
differentiable inspite of these index jumps.

that bring scalability and numerical robustness to l2-SVM-
MFN are: (a) Solving the regularized least squares system
of Eqn. 4 by a numerically well-behaved Conjugate Gradi-
ent scheme referred to as CGLS, which is designed for large,
sparse data matrices X. The benefit of the least squares
aspect of the loss function comes in here to provide access
to a powerful set of tools in numerical computation. (b)
Due to the one-sided nature of margin loss functions, these
systems are required to be solved over only restricted in-
dex sets (w) which can be much smaller than the whole
dataset. This also allows additional heuristics to be devel-
oped such as terminating CGLS early when working with a
crude starting guess like 0, and allowing the following line
search step to yield a point where the index set (w) is small.
Subsequent optimization steps then work on smaller subsets
of the data Below, we briefly discuss the CGLS and Line
search procedures. We refer the reader to [8] for full details.

2.1 CGLS
CGLS is a special conjugate-gradient solver that is de-

signed to solve, in a numerically robust way, large, sparse,
weighted regularized least squares problems such as the one
in Eqn. 4. Starting with a guess solution, several special-
ized conjugate-gradient iterations are applied to get w̄k that
solves Eqn. 4. The major expense in each iteration con-
sists of two operations of the form Xj(wk)p and XT

j(wk)q. If

there are n0 non-zero elements in the data matrix, these in-
volve O(n0) cost. It is worth noting that, as a subroutine of
l2-SVM-MFN, CGLS is typically called on a small subset,
Xj(wk) of the full data set. To compute the exact solution

of Eqn. 4, r iterations are needed, where r is the rank of
Xj(wk). But, in practice, such an exact solution is unnec-
essary. CGLS uses an effective stopping criterion for early
termination. The total cost of CGLS is O(tcglsn0) where
tcgls is the number of iterations, which depends on the prac-
tical rank of Xj(wk) and is typically found to be very small
relative to the dimensions of Xj(wk) (number of examples
and features). The memory requirements of CGLS are also
minimal: only five vectors need to be maintained, including
the outputs over the currently active set of data points.

Finally, an important feature of CGLS is worth empha-
sizing. Suppose the solution w of a regularized least squares
problem is available, i.e the linear system in Eqn. 4 has been
solved using CGLS. If there is a need to solve a perturbed
linear system, it is greatly advantageous in many settings to
start the CG iterations for the new system with w as the
initial guess. This is called seeding. If the starting residual
is small, CGLS can converge much faster than with a guess
of 0 vector. The utility of this feature depends on the nature
and degree of perturbation. In l2-SVM-MFN, the candidate
solution wk obtained after line search in iteration k is seeded
for the CGLS computation of w̄k. Also, in tuning λ over a
range of values, it is valuable to seed the solution for a par-
ticular λ onto the next value. For the semi-supervised SVM
implementations with l2-SVM-MFN, we will seed solutions
across linear systems with slightly perturbed label vectors,
data matrices and costs.

2.2 Line Search
Given the vectors wk,w̄k in some iteration of l2-SVM-

MFN, the line search step requires us to solve Eqn. 5. The
one-dimensional function φ(δ) is the restriction of the ob-
jective function f on the ray from wk onto w̄k. Hence, like

f , φ(δ) is also a continuously differentiable, strictly convex,
piecewise quadratic function with a unique minimizer. φ′ is
a continuous piecewise linear function whose root, δk, can
be easily found by sorting the break points where its slope
changes and then performing a sequential search on that
sorted list. The cost of this operation is negligible compared
to the cost of the CGLS iterations.

l2-SVM-MFN alternates between calls to CGLS and line
searches. Its computational complexity is O(tmfn t̄cglsn0)
where tmfn is the number of outer iterations of CGLS calls
and line search, and t̄cgls is the average number of CGLS
iterations. These depend on the data set and the toler-
ance desired in the stopping criterion, but are typically very
small. For example, on a text classification experiment in-
volving 198788 examples and 252472 features, tmfn = 11
and t̄cgls = 102. Therefore, the complexity of l2-SVM-MFN
is effectively linear in the number of entries in the data ma-
trix.

3. SEMI-SUPERVISED LINEAR SVMS
We now assume we have l labeled examples {xi, yi}

l
i=1

and u unlabeled examples {x′
j}

u
j=1 with xi, x

′
j ∈ R

d and
yi ∈ {−1, +1}. Our goal is to construct a linear classifier
sign(wT x) that utilizes unlabeled data, typically in situa-
tions where l � u. We present semi-supervised algorithms
that provide l2-SVM-MFN the capability of dealing with
unlabeled data.

3.1 Transductive SVM
Transductive SVM appends an additional term in the

SVM objective function whose role is to drive the classi-
fication hyperplane towards low data density regions. Vari-
ations of this idea have appeared in the literature [5, 1, 6].
Since [5] appears to be the most natural extension of stan-
dard SVMs among these methods, and is popularly used in
Text classification applications, we will focus on developing
its large scale implementation.

The following optimization problem is setup for standard
TSVM3:

min
w,{y′

j
}u

j=1

λ

2
‖w‖2 +

1

2l

lX

i=1

l(yi wT xi) +
λ′

2u

uX

j=1

l(y′
j wT x′

j)

subject to:
1

u

uX

j=1

max[0, sign(wT x′
j)] = r

where the hinge loss function, l(z) = l1(z) = max(0, 1−z) is
normally used. The labels on the unlabeled data, y′

1 . . . y′
u,

are {+1,−1}-valued variables in the optimization problem.
In other words, TSVM seeks a hyperplane w and a labeling
of the unlabeled examples, so that the SVM objective func-
tion is minimized, subject to the constraint that a fraction
r of the unlabeled data be classified positive. SVM margin
maximization in the presence of unlabeled examples can be
interpreted as an implementation of the cluster assumption.
In the optimization problem above, λ′ is a user-provided
parameter that provides control over the influence of unla-
beled data. For example, if the data has distinct clusters
with a large margin, but the cluster assumption does not

3The bias term is typically excluded from the regularizer,
but this factor is not expected to make any significant dif-
ference.

hold, then λ′ can be set to 0 and the standard SVM is re-
trieved. If there is enough labeled data, λ, λ′ can be tuned
by cross-validation. An initial estimate of r can be made
from the fraction of labeled examples that belong to the
positive class and subsequent fine tuning can be done based
on validation performance.

This optimization is implemented in [5] by first using an
inductive SVM to label the unlabeled data and then itera-
tively switching labels and retraining SVMs to improve the
objective function. The TSVM algorithm wraps around an
SVM training procedure. The original (and widely popu-
lar) implementation of TSVM uses the SVMlight software.
There, the training of SVMs in the inner loops of TSVM
uses dual decomposition techniques. As shown by experi-
ments in [8], in sparse, linear settings one can obtain signifi-
cant speed improvements with l2-SVM-MFN over SVMlight.
Thus, by implementing TSVM with l2-SVM-MFN, we ex-
pect similar improvements for semi-supervised learning on
large, sparse datasets. Note that l2-SVM-MFN can also be
used to speedup other TSVM formulations e.g [4] in such
cases. The l2-SVM-MFN retraining steps in the inner loop of
TSVM are typically executed extremely fast by using seed-
ing techniques. Additionally, we also propose a version of
TSVM where more than one pair of labels may be switched
in each iteration. These speed-enhancement details are dis-
cussed in the following subsections.

3.1.1 Implementing TSVM Using l2-SVM-MFN
To develop the TSVM implementation with l2-SVM-MFN,

we consider the TSVM objective function but with the L2-
SVM loss function, l = l2.

Figure 1: l2 loss function for TSVM

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

output

lo
ss

Note that this objective function above can also be equiv-
alently written in terms of the following loss over each un-
labeled example x:

min[l2(w
T x), l2(−wT x)] = max[0, 1 − |wT x|]2

Here, we pick the value of the label variable y that minimizes
the loss on the unlabeled example x, and rewrite in terms
of the absolute value of the output of the classifier on x.
This loss function is shown in Fig. 1. We note in passing
that, l1 and l2 loss terms over unlabeled examples are very
similar on the interval [−1, +1]. The non-convexity of this
loss function implies that the TSVM training procedure is
susceptible to local optima issues. In the next subsection,
we will outline a deterministic annealing procedure that can
overcome this problem.

The TSVM algorithm with l2-SVM-MFN closely follows
the presentation in [5]. A classifier is obtained by first run-
ning l2-SVM-MFN on just the labeled examples. Temporary
labels are assigned to the unlabeled data by thresholding the

soft outputs of this classifier so that the fraction of the total
number of unlabeled examples that are temporarily labeled
positive equals the parameter r. Then starting from a small
value of λ′, the unlabeled data is gradually brought in by
increasing λ′ by a certain factor in the outer loop. This grad-
ual increase of the influence of the unlabeled data is a way
to protect TSVM from being immediately trapped in a local
minimum. An inner loop identifies pairs of unlabeled exam-
ples with positive and negative temporary labels such that
switching these labels would decrease the objective function.
l2-SVM-MFN is then retrained with the switched labels.

3.1.2 Multiple Switching
The TSVM algorithm presented in [5] involves switching

a single pair of labels at a time. We propose a variant where
upto S pairs are switched such that the objective function
improves. Here, S is a user controlled parameter. Setting
S = 1 recovers the original TSVM algorithm, whereas set-
ting S = u/2 switches as many pairs as possible in the inner
loop of TSVM. The implementation is conveniently done as
follows:

1. Identify unlabeled examples with active indices and
currently positive labels. Sort corresponding outputs in as-
cending order. Let the sorted list be L+.

2. Identify unlabeled examples with active indices and
currently negative labels. Sort corresponding outputs in de-
scending order. Let the sorted list be L−.

3. Pick pairs of elements, one from each list, from the
top of these lists until either a pair is found such that the
output from L+ is greater than the output from L−, or if S
pairs have been picked.

4. Switch the current labels of these pairs.

Using arguments similar to Theorem 2 in [5] we can show
that Transductive l2-SVM-MFN with multiple-pair switch-
ing converges in a finite number of steps.

We are unaware of any prior work that suggests and eval-
uates this simple multiple-pair switching heuristic. Our ex-
perimental results in section 4 establish that this heuristic
is remarkably effective in speeding up TSVM training while
maintaining generalization performance.

3.1.3 Seeding
The effectiveness of l2-SVM-MFN on large sparse datasets

combined with the efficiency gained from seeding w in the
re-training steps (after switching labels or after increasing
λ′) make this algorithm quite attractive. The complexity
of Transductive L2-TSVM-MFN is O(nswitches t̄mfn t̄cglsn0),
where nswitches is the number of label switches. Typically,
nswitches is expected to strongly depend on the data set and
also on the number of labeled examples. Since it is difficult
to apriori estimate the number of switches, this is an issue
that is best understood from empirical observations.

3.2 Deterministic Annealing
The transductive SVM loss function over the unlabeled

examples can be seen from Fig. 1 to be non-convex. This
makes the TSVM optimization procedure susceptible to lo-
cal minimum issues causing a loss in its performance in many
situations, e.g as recorded in [3]. We now present a new
algorithm based on deterministic annealing that can poten-
tially overcome this problem while also being computation-

ally very attractive for large scale applications. Determin-
istic Annealing [2, 9] (DA) is an established tool for com-
binatorial optimization that approaches the problem from
information theoretic principles. The discrete variables in
the optimization problem are relaxed to continuous proba-
bility variables and a non-negative temperature parameter
T is used to track the global optimum.

We begin by re-writing the TSVM objective function as
follows:

w? = argmin
w,{µj}

u
j=1

λ

2
‖w‖2 +

1

2l

lX

i=1

l2(w
T xi)

+
λ′

2u

uX

j=1

“

µjl2(w
T x′

j) + (1 − µj)l2(−wT x′
j)

”

Here, we introduce binary valued variables µj = (1 + yj)/2.
Let pj ∈ [0, 1] denote the belief probability that the unla-
beled example x′

j belongs to the positive class. The Ising

model 4 motivates the following objective function, where
we relax the binary variables µj to probability variables pj ,
and include entropy terms for the distributions defined by
pj :

w?
T = argmin

w,{pj}
u
j=1

λ

2
‖w‖2 +

1

2l

lX

i=1

l2(yiw
T xi)

+
λ′

2u

uX

j=1

“

pjl2(w
T x′

j) + (1 − pj)l2(−wT x′
j)

”

+
T

2u

uX

j=1

[pj log pj + (1 − pj) log (1 − pj)] (6)

Here, the “temperature” T parameterizes a family of ob-
jective functions. The objective function for a fixed T is
minimized under the following class balancing constraint:

1

u

uX

j=1

pj = r (7)

where r is the fraction of the number of unlabeled examples
belonging to the positive class. As in TSVM, r is treated as
a user-provided parameter. It may also be estimated from
the labeled examples.

The solution to the optimization problem above is tracked
as the temperature parameter T is lowered to 0. We monitor
the value of the objective function in the optimization path
and return the solution corresponding to the minimum value
achieved.

To develop an intuition for the working on this method, we
consider the loss term in the objective function associated
with an unlabeled example as a function of the output of
the classifier. Fig. 2 plots this loss term for various values
of T . As the temperature is decreased, the loss function
deforms from a squared-loss shape where a global optimum
is easier to achieve, to the TSVM loss function in Fig. 1.
At high temperatures a global optimum is easier to obtain.
The minimizer is then slowly tracked as the temperature is
lowered towards zero.

4A multiclass extension would use the Potts glass model.
There, one would have to append the entropy of the distri-
bution over multiple classes to a multi-class objective func-
tion.

Figure 2: DA loss function parameterized by T.

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

output

lo
ss

Decreasing T

The optimization is done in stages, starting with high val-
ues of T and then gradually decreasing T towards 0. For
each T , the problem in Eqns. 6,7 is optimized by alternat-
ing the minimization over w and p = [p1 . . . pu] respectively.
Fixing p, the optimization over w is done by l2-SVM-MFN
with seeding. Fixing w, the optimization over p can also be
done easily as described below. Both these problems involve
convex optimization and can be done exactly and efficiently.
We now provide some details.

3.2.1 Optimizingw
We describe the steps to efficiently implement the l2-SVM-

MFN loop for optimizing w keeping p fixed. The call to l2-

SVM-MFN is made on the data X̂ =
ˆ
XT X ′T X ′T

˜T
whose

first l rows are formed by the labeled examples, and the next
2u rows are formed by the unlabeled examples appearing as
two repeated blocks. The associated label vector and cost
matrix are given by

Ŷ = [y1, y2...yl,

u
z }| {

1, 1, ...1,

u
z }| {

−1,−1... − 1]

C = diag

2

6
6
4

l
z }| {

1

l
...

1

l
,

u
z }| {

λ′ p1

u
...

λ′ pu

u

u
z }| {

λ′(1 − p1)

u
...

λ′(1 − pu)

u

3

7
7
5

(8)

Even though each unlabeled data contributes two terms to
the objective function, effectively only one term contributes
to the complexity. This is because matrix-vector products,
which form the dominant expense in l2-SVM-MFN, are per-
formed only on unique rows of a matrix. The output may
be duplicated for duplicate rows. Infact, we can re-write the
CGLS calls in l2-SVM-MFN so that the unlabeled examples
appear only once in the data matrix.

3.2.2 Optimizingp
For the latter problem of optimizing p for a fixed w, we

construct the Lagrangian:

L =
λ′

2u

uX

j=1

“

pjl2(w
T x′

j) + (1 − pj)l2(−wT x′
j)

”

+

T

2u

uX

j=1

(pj log pj + (1 − pj) log (1 − pj)) − ν

"

1

u

uX

j=1

pj − r

#

Solving ∂L/∂pj = 0, we get:

pj =
1

1 + e
gj−2ν

T

(9)

where gj = λ′[l2(w
T x′

j) − l2(−wT x′
j)]. Substituting this

expression in the balance constraint in Eqn. 7, we get a
one-dimensional non-linear equation in 2ν:

1

u

uX

j=1

1

1 + e
gi−2ν

T

= r

The root is computed by using a hybrid combination of
Newton-Raphson iterations and the bisection method to-
gether with a carefully set initial value.

3.2.3 Stopping Criteria
For a fixed T , the alternate minimization of w and p pro-

ceeds until some stopping criterion is satisfied. A natural
criterion is the mean Kullback-Liebler divergence (relative
entropy) KL(p, q) between current values of pi and the val-
ues, say qi, at the end of last iteration. Thus the stopping
criterion for fixed T is:

KL(p, q) =

uX

j=1

pj log
pj

qj

+ (1 − pj) log
1 − pj

1 − qj

< uε

A good value for ε is 10−6. The temperature may be de-
creased in the outer loop until the total entropy falls below
a threshold, which we take to be ε = 10−6 as above, i.e.,

H(p) = −

uX

j=l

(pj log pj + (1 − pj) log (1 − pj)) < uε

The TSVM objective function,

λ

2
‖w‖2 +

1

2l

lX

i=1

l2(yi (wT xi) +
λ′

2u

uX

j=1

max
h

0, 1 − |wT x′
j |

i2

is monitored as the optimization proceeds. The weight vec-
tor corresponding to the minimum transductive cost in the
optimization path is returned as the solution.

4. EMPIRICAL STUDY
Semi-supervised learning experiments were conducted to

test these algorithms on six text binary classification prob-
lems. These are listed in Table 1.

The aut-avn and real-sim binary classification datasets
come from a collection of UseNet articles5 from four discus-
sion groups, for simulated auto racing, simulated aviation,
real autos, and real aviation. The ccat and gcat data sets
pose the problem of separating corporate and government re-
lated articles respectively; these are the top-level categories
in the RCV1 training data set [7]. These data sets create
an interesting situation where semi-supervised learning is
required to learn different low density separators respecting
different classification tasks in the same input space. The
33-36 data set is a subset of a multiclass Yahoo shopping
data set. Finally, the pcmac data set is a small subset of
the 20-newsgroups data popularly used in semi-supervised
learning literature (e.g in [3]). The results below are aver-
aged over 10 random stratified splits of training (labeled and
unlabeled) and test sets. The performance of SVM, DA and
TSVM is studied as a function of the amount of labeled data
in the training set. Since the two classes are fairly well rep-
resented in these datasets, we report error rates, but expect

5Available at: http://www.cs.umass.edu/∼mccallum/data/
sraa.tar.gz

Table 1: Two-class datasets. d : data dimensionality,
n̄0 : average sparsity, l + u : number of labeled and
unlabeled examples, t : number of test examples, r :
positive class ratio.

Dataset d n̄0 l + u t r

aut-avn 20707 51.32 35588 35587 0.65
real-sim 20958 51.32 36155 36154 0.31

ccat 47236 75.93 17332 5787 0.46
gcat 47236 75.93 17332 5787 0.30
33-36 59072 26.56 41346 41346 0.49
pcmac 7511 54.58 1460 486 0.51

our conclusions to also hold for other performance measures
such as F-measure. We use a default value of λ′ = 1 for all
datasets except6 for aut-avn and ccat where λ′ = 10. The
default value of λ = 0.001 was used for all datasets.

For datasets and software implementation, we point the
reader to [12].

Minimization of Objective Function
We first examine the effectiveness of TSVM and DA in opti-
mizing the TSVM objective function. In Table 2, we report
the minimum value of the objective function achieved by
TSVM and DA with respect to varying number of labels. As
compared to TSVM, we see that DA performs significantly
better optimization on aut-avn, ccat, and pcmac datasets
and slightly better optimization on the other datasets.

Table 2: TSVM,DA: Minimum value of objective
function achieved with respect to number of labels.
Statistically significantly better minimizations are
shown in bold.

aut-avn l=45 89 178 356 712 1424
TSVM 0.692 0.692 0.698 0.709 0.715 0.722

DA 0.669 0.663 0.670 0.679 0.687 0.696

real-sim l=46 91 181 362 724 1447
TSVM 0.168 0.181 0.194 0.212 0.235 0.257

DA 0.166 0.176 0.190 0.210 0.234 0.256

ccat l=44 87 174 348 695 1389
TSVM 0.583 0.602 0.637 0.663 0.682 0.704

DA 0.575 0.594 0.603 0.619 0.639 0.662

gcat l=44 87 174 348 695 1389
TSVM 0.135 0.140 0.147 0.159 0.177 0.193

DA 0.134 0.138 0.146 0.158 0.176 0.192

33-36 l=52 104 207 414 827 1654
TSVM 0.198 0.210 0.233 0.256 0.286 0.316

DA 0.196 0.208 0.230 0.255 0.285 0.315

pcmac l=37 73 110 146 183 220
TSVM 0.136 0.137 0.138 0.139 0.141 0.142

DA 0.122 0.125 0.128 0.131 0.134 0.136

Generalization Performance
In Table 3 we report error rates over unseen test examples
for SVM (which only uses labeled examples), TSVM and
DA with respect to varying amounts of labeled data. The
following observations are made.

(1) Comparing the performance of SVM against the semi-
supervised algorithms, the benefit of unlabeled data for boost-

6This produced better results for both TSVM and DA. A
careful optimization of λ′ was not attempted.

Table 3: SVM, TSVM, DA: test error rate compari-
son. TSVM (S=max) are results for multiple (max-
imum possible) switching TSVM. Bold numbers in-
dicate a significant performance difference between
TSVM and DA.

aut-avn l= 45 89 178 356 712 1424
SVM 31.8 24.0 15.6 10.3 7.6 5.8
DA 7.0 4.6 4.5 3.9 3.7 3.6

TSVM 6.2 5.6 5.2 4.7 4.3 3.9
TSVM (S=max) 6.1 5.6 5.2 4.7 4.3 3.9

real-sim l= 46 91 181 362 724 1447
SVM 28.7 24.9 18.2 12.8 9.8 7.5
DA 15.4 13.5 11.6 10.0 8.4 7.2

TSVM 16.3 12.5 10.2 9.0 7.9 6.9
TSVM (S=max) 15.9 12.4 10.2 8.9 7.9 6.9

ccat l=44 87 174 348 695 1389
SVM 23.9 18.6 14.6 11.9 10.0 8.7
DA 18.1 13.7 11.9 10.3 9.2 8.5

TSVM 20.3 13.9 11.7 10.2 9.1 8.3
TSVM (S=max) 20.2 14.0 11.7 10.2 9.1 8.3

gcat l=44 87 174 348 695 1389
SVM 26.1 18.1 11.8 8.3 6.6 5.6
DA 6.0 5.9 5.8 5.7 5.4 5.2

TSVM 6.1 6.0 5.8 5.7 5.4 5.1
TSVM (S=max) 6.2 6.0 5.8 5.8 5.4 5.1

33-36 l= 52 104 207 414 827 1654
SVM 26.0 20.3 15.5 12.7 10.7 8.9
DA 21.5 17.4 13.3 11.4 9.8 8.6

TSVM 21.3 16.6 12.8 11.2 9.7 8.5
TSVM (S=max) 21.4 16.6 12.8 11.2 9.7 8.5

pcmac l= 37 73 110 146 183 220
SVM 18.0 12.1 9.7 8.0 7.4 6.7
DA 5.2 5.0 4.6 4.7 4.4 4.3

TSVM 7.4 6.9 6.0 5.7 5.1 4.7
TSVM (S=max) 7.3 6.8 6.0 5.7 5.1 4.7

ing generalization performance is evident on all datasets.
This is true even for moderate number of labels, though it
is particularly striking towards the lower end.

(2) On aut-avn and pcmac, DA outperforms TSVM sig-
nificantly. On ccat, DA performs a much better optimization
(Table 2) but this does not translate into major error rate
improvements. DA and TSVM are very closely matched on
gcat and 33-36. On real-sim, TSVM and DA perform very
similar optimization of the transduction objective function
(Table 2), but appear to return very different solutions. The
TSVM solution returns lower error rates as compared to DA
on this dataset.

(3) On all datasets we found that multiple switching
(see rows corresponding to TSVM (S=max) in Table 3)
returned nearly identical performance as single switching.
Since it saves significant computation time, our study estab-
lishes multiple switching as a valuable heuristic for training
TSVM.

(4) These observations are also true for in-sample trans-
ductive performance. Both TSVM and DA are found to
provide high quality extension to unseen test data.

Computational Timings
In Figure 3, we plot the average computation time for DA
and TSVM with single and maximum switching. We make
the following observations. The single switch TSVM is an
order of magnitude slower than the maximum switching vari-
ant. DA is significantly faster than single switch TSVM but
slower than TSVM with maximum switching.

Figure 3: Computation time with respect to num-
ber of labels for DA and Transductive l2-SVM-MFN
with single and multiple switches.

45 89 178 356 712 1424 2848

10
3

num. of labeled examples

ti
m

e

aut−avn

46 91 181 362 724 1447 2893

10
3

num. of labeled examples

ti
m

e

real−sim

22 44 87 174 348 695 1389 2778

10
3

num. of labeled examples

ti
m

e

ccat

22 44 87 174 348 695 1389 2778

10
3

num. of labeled examples

ti
m

e

gcat

52 104 207 414 827 1654 3308

10
3

num. of labeled examples

ti
m

e

33−36

37 73 110 146 183 220 256 292

10
1

num. of labeled examples

ti
m

e

pcmac

DA

TSVM (S=1)

TSVM (S=max)

In Table 4, we compare our TSVM and DA implementa-
tions with SVMlight at its default optimization settings on
the first split with fewest labeled examples. These compar-
isons clearly demonstrate massive speedups with our meth-
ods. Note that the results presented in this section were
obtained with a MATLAB implementation. We expect sig-
nificantly faster computation times with a C or a fortran
implementation, especially with parallel computation of ma-
trix vector products7.

Table 4: Speed comparisons (in seconds) with
SVMlight. S=1 and S=max denotes our single and
multiple maximum implementations.

Dataset SVMlight S=1 S=max DA
aut-avn 101759 5849 390 1446
real-sim 498313 6244 373 1129

ccat 13540 2352 390 1185
gcat 243840 1267 358 159
33-36 48390 7406 309 393
pcmac 167 4 2 12

Importance of Annealing
To confirm the necessity of an annealing component (track-
ing the minimizer with respect to T) in the optimization,
we compare DA with the alternating w,p optimization pro-
cedure where the temperature parameter is held fixed at
T = 0.1 and T = 0.001. In Figure 4 we plot the error rates
achieved with and without annealing. We see that anneal-
ing tends to provide higher quality solutions as compared to
fixed temperature optimization.

It is important to note that the gradual increase of λ′ to
the user-set value in TSVM is also a mechanism to avoid

7preliminary experiments with a C++ implementation (to
be made available at [12]) suggested about 5-fold further
improvements in speed.

Figure 4: Error Rates achieved by DA and fixed temperature optimization with respect to number of labels.

45 89 178 356 712 1424 2848

10

20

30

num. of labeled examples
te

st
 e

rr
 %

aut−avn

46 91 181 362 724 1447 2893

8
10
12
14
16

num. of labeled examples

te
st

 e
rr

 %

real−sim

22 44 87 174 348 695 1389 2778
10

20

30

40

num. of labeled examples

te
st

 e
rr

 %
ccat

22 44 87 174 348 695 1389 2778
5
6
7
8
9

num. of labeled examples

te
st

 e
rr

 %

gcat

52 104 207 414 827 1654 3308

10

15

20

25

num. of labeled examples

te
st

 e
rr

 %

33−36

37 73 110 146 183 220 256 292
5

10
15
20
25

num. of labeled examples

te
st

 e
rr

 %

pcmac

DA

T=0.1

T=0.001

local optima. The non-convex part of the TSVM objective
function is gradually increased to a desired value. In this
sense, λ′ simultaneously plays the role of an annealing pa-
rameter and also provides control over the strength of the
cluster assumption. This dual role has the advantage that
a suitable λ′ can be chosen by monitoring performance on
a validation set as the algorithm proceeds. In DA, however,
we directly apply a framework for global optimization, and
decouple annealing from the implementation of the cluster
assumption. As our experiments show, this can lead to sig-
nificantly better solutions on many problems.

5. CONCLUSION
In this paper we have proposed a family of primal SVM

algorithms for large scale semi-supervised learning based
on the finite Newton technique. Our methods significantly
enhance the training speed of TSVM over existing meth-
ods such as SVMlight and also include a new effective tech-
nique based on deterministic annealing. The new TSVM
method with multiple switching is the fastest of all the al-
gorithms considered, and also returns good generalization
performance. The DA method is relatively slower but often
gives the best accuracy. These algorithms can be very valu-
able in applied scenarios where sparse classification prob-
lems arise frequently, labeled data is scarce and plenty of
unlabeled data is easily available. Even in situations where
a good number of labeled examples are available, utilizing
unlabeled data to obtain a semi-supervised solution using
these algorithms can be worthwhile. For one thing, the semi-
supervised solutions never lag behind purely supervised so-
lutions in terms of performance. The presence of a mix of
labeled and unlabeled data can provide added benefits such
as reducing performance variability and stabilizing the lin-
ear classifier weights. Our algorithms can be extended to the
non-linear setting [10], and may also be developed to handle
clustering and one-class classification problems. These are
subjects for future work.

6. REFERENCES
[1] K. Bennett and A. Demirez, Semi-Supervised Support

Vector Machines, NIPS 1998.

[2] G. Bilbro, R. Mann, T.K. Miller, W.E. Snyder and
D.E. Van den, Optimization by Mean Field Annealing,
NIPS 1989.

[3] O. Chapelle and A. Zien, Semi-Supervised
Classification by Low Density Separation, AI &
Statistics, Barbados, January 2005.

[4] R. Collobert, F. Sinz, J. Weston, and L. Bottou, Large
Scale Transductive SVMs, (submitted) 2006.

[5] T. Joachims, Transductive Inference for Text
Classification using Support Vector Machines, ICML
1998.

[6] G. Fung and O. Mangasarian, Semi-Supervised Support
Vector Machines for Unlabeled Data Classification,
Optimization Methods and Software 15, 2001, 29-44.

[7] D. Lewis, Y. Yang, T. Rose and F. Li, RCV1: A New
Benchmark Collection for Text Categorization
Research, Journal of Machine Learning Research

5:361-397, 2004.

[8] S. S. Keerthi and D. DeCoste, A Modified Finite
Newton Method for Fast Solution of Large Scale Linear
SVMs, Journal of Machine Learning Research

6:341–361, 2005.

[9] C. Peterson and B. Soderberg, A new method for
mapping optimization problems onto neural networks,
International Journal of Neural Systems, 1(1):3–22,
1989.

[10] V. Sindhwani, S. S. Keerthi, and O. Chapelle,
Deterministic Annealing for Semi-supervised Kernel
Machines, ICML 2006.

[11] V. Sindhwani and S.S. Keerthi, Large Scale
Semi-supervised Linear SVMs, Technical report, Yahoo
research, 2006.

[12] http://www.cs.uchicago.edu/~vikass/research.html

[13] V. Vapnik, Statistical Learning Theory, John Wiley and
Sons, New York, 1998.

