
A Family of Non-negative Matrix Factorizations for
One-Class Collaborative Filtering Problems

V. Sindhwani
Mathematical Sciences

IBM Research
vsindhw@us.ibm.com

S.S. Bucak
Dept. Of Computer Science
Michigan State University
ssbucak@us.ibm.com

J. Hu A. Mojsilovic
Mathematical Sciences

IBM Research
{jyhu,aleksand}@us.ibm.com

ABSTRACT
This paper is motivated by the industrial research prob-
lem of designing a real-world recommender system for a
large Information Technology (IT) company. Given histor-
ical records of client purchases, compactly represented as a
sparse client-times-product “who-bought-what” binary ma-
trix, the goal is to build a model that provides recommenda-
tions for what products should be sold next to the existing
client base. Such a problem may naturally be formulated as
a collaborative filtering task. However, this is a one-class
setting, that is, if a client has not bought a product yet, it
does not imply that the client has a low propensity to po-
tentially buy that product later. In the absence of explicitly
labeled negative examples, one may resort to considering
zero-valued client-product pairs as either missing data or
as surrogate negative instances. In this paper, we outline
an approach to explicitly deal with this kind of ambiguity
by instead treating zero-valued pairs as optimization vari-
ables. These variables are optimized in conjunction with
learning a weighted, low-rank non-negative matrix factor-
ization (NMF) of the client-product matrix. The proposed
algorithm alternates NMF optimization with deterministic-
annealing/continuation techniques designed for global min-
imization of combinatorial and non-convex objective func-
tions. Experimental results show that our approach can
give significantly better recommendations in comparison to
various competing alternatives on a one-class collaborative
filtering task.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Algorithms

Keywords
Collaborative Filtering, Non-negative Matrix Factorizations

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RecSys ’2009 New York, USA
Recommender Based Industrial Applications Workshop
Copyright 2009 is held by the authors.

1. INTRODUCTION
Large multinational IT organizations sell a huge variety of

products to a large number of clients. The set of products is
highly diverse ranging from hardware and software to busi-
ness intelligence and outsourcing services. The client base
is typically global, covering a wide range of firmographic
characteristics. In such a large-scale business environment,
there arises a need to make data-driven decisions on where
to optimally allocate sales resources. A model that can an-
alyze historical purchase patterns of existing clients, and
make useful recommendations to sellers and marketers as to
which clients should be targeted next with what products,
can add immense value – not only from the perspective of
day-to-day selling, but also in terms of supporting longer
term business strategy formation by providing an accurate
and dynamic view of opportunities that are likely to enter
the sales pipeline once the recommendations are followed.

Purchase data is typically meticulously recorded in cor-
porate databases. This data can be represented as an m ×
n binary matrix where one-valued entries represent pur-
chases, and zero-valued entries represent products not yet
purchased, by m clients over a space of n products. De-
tailed business knowledge of clients and products is typically
spread in a diffused manner over the entire organization. It
is therefore attractive to attempt to make sales recommen-
dations without significant manual involvement, or with-
out painstaking management of rapidly changing client and
product profiles. Collaborative filtering is a natural choice
for designing such a system since it generates recommenda-
tions by centrally analyzing the client-product matrix alone.

The recently concluded million-dollar Netflix competition
has catapulted collaborative filtering and, in-particular, ma-
trix factorization techniques to the forefront of recommender
technologies [25, 1, 14]. Describing their prize-winning en-
semble of techniques in a recent paper [25], the authors state
that factorization models are “the most popular and success-
ful methods for predicting ratings” constituting the major-
ity of the models in their ensemble. Yet, when thinking of
applying matrix factorization techniques to the sales rec-
ommendation problem, we realize that it is quite different
from movie recommendation. In a Netflix-like setting, the
user-movie matrix consists of three kinds of entries: posi-
tive ratings expressing viewing preferences, negative ratings
expressing dislike, and unrated movies that may be simply
considered as missing data to be estimated. On the other
hand, the sales recommendation setting intrinsically gener-
ates one-class datasets since the business domain knowledge
for negative examples – that a client has no interest in buy-

ing a product ever in the future – is typically not available
explicitly in corporate databases. Moreover, such knowledge
is difficult to gather and maintain in the first place, given
the rapidly changing business environment, and therefore,
also, client tendencies to purchase a product.

A low-rank matrix factorization approach starts with the
assumption that there exist a small number, say k, of la-
tent factors that can explain the buying behavior of clients.
Clients and Products are represented as feature vectors in
this latent space, where similarity between a client-product
pair models the propensity of the client to buy that product.
While exact interpretability is never easy with latent factor
models, one can imagine that latent factors implictly cap-
ture attributes such as firmographics for clients (e.g., size,
turn-over, industry-sector) or “bundles” for product (e.g.,
packaged solutions combining hardware, software and ser-
vices).

With positive-only data, matrix factorization models may
be learnt by treating all zeros (no-purchases) as missing
data. This is an intuitively suboptimal strategy since it
attempts to learn from only a very small set of positive ex-
amples. At the other extreme is the strategy of treating
all zeros as negative. This too seems suboptimal in that
a client-product deal that is likely to materialize in the fu-
ture, but has not done so yet, is marked as a low-affinity
(negative) example. The latter methodology does have the
advantage that if most zeros are indeed negative, then the
latent factors provide a representation where high-affinity
client-product pairs can be better discriminated against the
low-affinity ones, modulo labeling errors that are introduced
by marking all zeros as negative.

We formulate a new one-class strategy that avoids ei-
ther extreme by means of explicit optimization. Since we
truly do not know the status of the interest of a client in
a product they have yet not purchased, we treat the asso-
ciated client-product pair as an optimization variable. The
latent factors and these discrete label variables are learnt
simultaneously, thus bringing the advantage of learning dis-
criminative factors, while simultaneously attempting to ju-
diciously assign labels. We propose a novel procedure to
minimize the associated objective function, drawing from
global optimization techniques (known as deterministic an-
nealing/continuation/homotopy methods) for combinatorial
and non-convex problems. These techniques have been pre-
viously utilized in the context of Semi-supervised SVMs [23,
22]; but here, they are applied in conjunction with NMF op-
timization. Experimental results on a one-class movie rec-
ommendation task show that the proposed technique can
generate significantly better recommendations, in compari-
son to various competing alternatives.

2. BACKGROUND & RELATED WORK
In its purest form, the goal of Collaborative Filtering is to

construct a model to predict preferences of clients (“users”)
over a range of products (“items”), based only on observa-
tions of historical purchases. A large number of techniques
have been proposed (see, e.g., [7, 3, 8, 21, 24], and ref-
erences therein) with some extensions to incorporate ad-
ditional user-item attributes [17, 12]. In a typical matrix
factorization approach to Collaborative Filtering, a client
and a product are represented as unknown feature vectors
w, h ∈ Rk whose dimensions are considered as k latent fac-
tors. These feature vectors are learnt so that inner products

wT h match the known preference ratings. This is equivalent
to the problem of building weighted approximations of the
preference matrix by taking the product of low-rank factor
matrices, where weights are chosen such that known ratings
are emphasized in measuring the quality of the approxima-
tion. Once the factors are learnt, they provide a prediction
for unknown ratings which may then be used for generating
recommendations. Various models differ in the approxima-
tion criteria or the loss function they employ, and variants
may be derived by adding different kinds of regularization
to avoid overfitting. For such models in the context of the
Netflix problem, see [1, 14, 18, 25].

Much of the work in collaborative filtering assumes avail-
ability of a range of high and low ratings, or multiple classes
in the data matrix. One-class collaborative filtering is a
relatively recent theme of research, despite the ubiquity of
one-class recommendation tasks. [20, 19] are recent pa-
pers that propose weighting and sampling schemes to handle
one-class settings with unconstrained factorizations1 based
on the squared loss. The essential idea is to treat all non-
positive user-item pairs as negative examples, but appropri-
ately control their contribution in the objective function via
either uniform, user-specific or item-specific weights. Our
goal in this paper is to attempt a principled optimization
over the labels of non-positive user-item pairs. Prelimi-
nary experiments show that our proposed method outper-
forms the global, user and item weighting schemes suggested
by [20].

Much of the prior work in these contexts has explored un-
constrained SVD-like factorizations, while we focus on the
use of Non-negative Matrix Factorizations (NMF) [15, 5].
NMF imposes non-negativity constraints on the latent fac-
tors. The purchase history of each client is approximated as
a mixture of product “parts” , i.e., basis vectors in the prod-
uct space. By disallowing subtractive basis, non-negativity
constraints lend a “part-based” interpretation to the predic-
tive model. NMF with generalized KL-divergence loss is
equivalent [6] to Probabilistic Latent Semantic Analysis [9]
which has previously been used for Collaborative Filtering
tasks [10].

Our methods are based on alternating optimization. In a
subroutine, we solve a weighted NMF optimization problem
for which we use a version of the multiplicative update rules
originally proposed by Lee and Seung [15], though other
NMF optimization techniques can also be used. The mul-
tiplicative update equations for the weighted, unregularized
case have been worked out in [2]. In our implementation
we also added regularization terms. Our methods can be
easily modified to further impose sparsity in the latent fac-
tors [11] by using l1-regularization. A separate sub-routine
handles optimization variables associated with non-positive
user-item pairs. Here, we draw on deterministic annealing
techniques previously used in the context of Transductive
SVMs [23, 22]. In many applications these techniques show
greater robustness to presence of sub-optimal local minima.
Several other non-convex optimization techniques can also
be brought to bear on this problem and we point the reader
to [4] and references therein. With various choices of loss
functions, regularizers and optimization strategies, we ob-
tain a family of non-negative matrix factorizations for one-
class collaborative filtering problems.

1Note: by “matrix factorization” we typically mean “matrix
approximation”since exact factorization is not the goal here.

3. FORMULATION
Let X be a m × n binary matrix, such as a typical who-

bought-what client-product matrix. X is usually large and
sparse. The set of non-zeros, S = {(i, j) : Xij = 1}, de-
notes client-product purchases. Xij = 0 means that no pur-
chase was made, but is not strictly a negative example. We
will use the notation S̄ = {(i, j) : Xij = 0} to denote the
complement of S, i.e., client-product pairs representing no-
purchases.

In the standard matrix factorization setting, we assume
that clients and products can be represented in an unknown
lower-dimensional feature space, where features correspond
to latent variables. Let W = [w1, . . . , wm]T be an m×k ma-
trix whose ith row, wi, is the kth dimensional representation
of a client. Similarly, let H = [h1, . . . , hn] be a k×n matrix
whose jth column, hj , is the kth dimensional representation
of a product. Then, weighted non-negative matrix factor-
ization (NMF) solves the following optimization problem,

arg min
W≥0,H≥0

λ‖W‖2
F + γ‖H‖2

F +
∑

(i,j)∈S

CijV (Xij , w
T
i hj) (1)

where V is a loss function, such as squared loss V (y, t) =
1
2
(t − y)2, or generalized KL-divergence V (y, t) = y log y

t
−

y + t, or hinge loss and its variants for max-margin ma-
trix factorizations [21]. For flexibility, we allow entry spe-
cific costs Cij ≥ 0. The real-valued parameters γ ≥ 0
and λ ≥ 0 tradeoff the regularizers against the data-fit
terms. The above problem can also be solved without non-
negativity constraints, which leads to weighted SVD-like so-
lutions for the squared loss. However, in many contexts,
learning non-negative factors is very natural and lends“part-
based” interpretability to the model [15, 5]. Note also that
while we used Frobenius norm i.e., l2 regularizers in our ex-
periments, our framework and algorithms easily allow for
sparsity-encouraging l1 regularization i.e., penalization of
‖W‖1 =

∑

i,j
Wij and ‖H‖1 =

∑

ij
Hij , with minor modifi-

cations to iterative update rules detailed later in this paper.
After learning W, H, the data matrix is reconstructed as

X̂ = WH. The (i, j) client-product pair for which X̂ij is
large (taking out pairs where Xij = 1) are then recom-
mended.

In a one-class setting, the loss function runs only over
(i, j) pairs such that Xij = 1. Since the loss function does
not include zero-valued pairs, this corresponds to treating
zeros as missing values. We refer to this approach as ZAM
(zeros-as-missing) approach.

An alternative approach is to treat zeros as negative ex-
amples, ZAN (zeros-as-negative). In that case, we solve,

arg min
W≥0,H≥0

λ‖W‖2
F + γ‖H‖2

F +

∑

(i,j)∈S

CijV (1, wT
i hj) +

∑

(i,j)∈S̄

CijV (0, wT
i hj) (2)

Above, recall the notation that S̄ represents the complement
of S, i.e., the (i, j) pairs corresponding to zero values in X.
Note that the ZAN model is biased towards producing low-
scores for products that a client has not bought before, which
may not be an accurate assumption.

In this paper, we consider an alternative between ZAM
and ZAN , which we call ZaOV which stands for zeros as

optimization variables. The ZaOV optimization problem
has the following form,

arg min
W≥0,H≥0

yij∈{0,1},(i,j)∈S̄

J
(

W, H, {yij}(i,j)∈S̄

)

=

λ‖W‖2
F + γ‖H‖2

F +
∑

(i,j)∈S

CijV (1, wT
i hj)

+
∑

(i,j)∈S̄

CijV (yij , w
T
i hj) (3)

where J
(

W, H, {yij}(i,j)∈S̄

)

denotes the objective function
above, whose first two optimization variables are the latent
factors, W, H, while the third set of variables are discrete
{0, 1}-valued variables, i.e., yij = 1 implies positive class
while yij = 0 implies negative class. Let us compare Equa-
tion 2 with Equation 3. Note that the only difference is
the last term. In the former case, we commit to all zero-
valued entries in X to be treated as “negative examples”
which biases the ZAN model towards producing low-scores
for associated client-product pairs, while in the latter ZaOV
model, we declare that these pairs are truly uncertain and
therefore the associated variables, yij , actually need to be
optimized.

We will solve the optimization problem of Equation 3, sub-
ject to the constraint that a certain user-specified fraction
of the optimization variables are positive:

1

|S̄|

∑

(i,j)∈S̄

yij = r (4)

where r will be a user-specified parameter which we will refer
to as the positive class ratio. Similar constraints are added
in the formulations for Transductive SVMs [13, 4].

Note some special cases of ZaOV . If we set r = 0, then
yij = 0, (i, j) ∈ S̄, and the associated optimal values of W, H
lead to the ZAN model. When we set Cij = 0, (i, j) ∈ S̄,
the ZaOV model trivially reduces to ZAM .

We now outline an alternating optimization algorithm to
minimize the ZaOV objective function in Equation 3 under
the class balance constraint of Equation 4.

4. OPTIMIZATION ALGORITHMS
We propose a simple alternating minimization algorithm.

First note that the ZaOV objective function has a mix of
continuous and discrete variables, i.e., it has two matrix-
valued continuous variables, W ∈ Rm×k and H ∈ Rk×n,
and a collection of binary variables yij ∈ {0, 1}. For any
fixed setting of the yij variables, the sub-problem of opti-
mizing W, H is a weighted non-negative matrix factoriza-
tion. Simple modifications of standard NMF techniques can
be used to solve this sub-problem. In-fact, alternating op-
timization is the typical workhorse here too since the opti-
mization over W keeping H fixed, and vice versa, are convex
problems. A large family of techniques can in principle be
brought to bear here including Lee and Seung’s multiplica-
tive updates [15], projected gradient techniques [16] and a
variety of other methods (see [5] for a review).

The other sub-problem, that of optimizing yij , (i, j) ∈ S̄
keeping W and H fixed, is a discrete optimization problem.

It is easy to see that the optimal values are given by,

yij =

{

0 if V (0, wT
i hj) < V (1, wT

i hj)
1 otherwise

(5)

It is possible to alternate W, H optimization with the
above settings for yij ’s. However, there are two problems
we need to address; one: we need to additionally satisfy
class balance constraint of Equation 4, and two: by aggres-
sively committing to discrete labels early in the optimiza-
tion, the procedure runs the risk of getting trapped in a
sub-optimal local minima. To address the latter issue, we
describe a more conservative approach using deterministic
annealing. In order to satisfy the class balance constraints,
Equation 4, one may implement a label switching proce-
dure akin to Joachim’s Transductive SVMs [13]. Starting
from the ZAM solution, client-product pairs (i, j) ∈ S̄ are
ranked by wT

i hj and the associated yij of the top r|S̄| are
re-set to a value of 1. This gives a feasible initial setting for
yij , (i, j) ∈ S̄. Next, a sequence of ZAN problems are solved
in alternation with a label switching sub-routine responsible
for locally optimizing yij variables. Let (a, b) and (c, d) be
two client-product pairs such that,

yab = 1, ycd = 0

CabV
(

1, wT
a hb

)

+ CcdV
(

0, wT
c hd

)

>

CabV
(

0, wT
a hb

)

+ CcdV
(

1, wT
c hd

)

(6)

If the above condition is satisfied, then swapping the labels,
i.e., setting yab = 0, ycd = 1 leads to a decrease in the ZaOV
objective function, while continuing to satisfy the balance
constraint. After the label swap, ZAN is retrained with new
labels, starting the optimization from the previous values of
W and H leading to further decrease. For a faster multi-
switch heuristic, and termination criteria, that can be used
here, we point the reader to [22] where this procedure is
implemented together with SVM optimization.

The label switching procedure briefly outlined above is one
member of a family of optimization algorithms (see [4]) that
can be used to solve Equation 3. In this paper, we focus
on deterministic annealing/homotopy methods given their
robustness to presence of sub-optimal local minima in many
applications. These are well-known techniques for handing
discrete optimization variables. We point the reader to [22,
23] for an overview. Operationally speaking, they involve
the following steps:

1. Relax discrete variables yij to real valued probability-
like variables pij . Instead of optimizing the original
objective function, J(W, H, {yij}ij∈S̄), with respect to
yij , optimize the expected value of the objective func-
tion under the probabilities pij .

2. Smooth the new objective function, such that as the
smoothing parameter is varied, we solve a sequence
of optimization problems of increasing difficulty. The
solution of an easier optimization problem is used as
the starting point of a harder optimization. Homotopy
refers to this kind of smooth deformation of objectives.

Let pij denote the probability that yij = 1. The modified
optimization problem with relaxation and smoothing is the
following,

arg max
W≥0,H≥0,{pij}(i,j)∈S̄

JT (W, H, {pij}ij∈S̄) =

λ‖W‖2
F + γ‖H‖2

F +
∑

(i,j)∈S

CijV (1, wT
i hj)

+
∑

(i,j)∈S̄

Cij

(

pijV (1, wT
i hj) + (1 − pij)V (0, wT

i hj)
)

−T
∑

(i,j)∈S̄

H(pij) subject to:
1

|S̄|

∑

ij

pij = r (7)

The third line in the equation above represents the ex-
pected loss under the probabilities pij . The last term H(p) =
−p log(p)−(1−p) log(1−p) is the smoothing function mea-
suring entropy. When T is very high, entropy is maximized
at pij = r. This corresponds to essentially solving a softer
version of ZAN (letting the negative label be r instead of
0). As T is decreased, the optimal pij can be shown to
progressively harden to discrete variables.

We outline an alternating optimization procedure to min-
imize JT (·, ·, ·). First, let us assume T is fixed. Our block
descent procedure first optimizes W and H, while keeping
pij ’s fixed. This is a call to a stand-alone weighted NMF
solver as we show below. Then keeping W, H fixed, we opti-
mize pij ’s under the class ratio constraint. This is a convex
problem that can be solved exactly. We outline these steps
in more detail for the squared loss, i.e., V (t, y) = 1

2
(t − y)2.

4.1 Optimizing W, H for fixed pij variables
For fixed p, the optimization over W, H involves the first

four terms of Equation 7. This sub-problem can be re-
written as,

arg min
W,H

λ‖W‖2
F + γ‖H‖2

F + ‖S ⊗ (X − WH) ‖2
F +

∑

ij

Cij

[

pij

(

1 − wT
i hj

)2

+ (1 − pij) (wT
i hj)

2

]

(8)

where ⊗ denotes elementwise product and the matrix S is
given by Sij =

√

Cij . With some simple re-arrangements,
it is easy to see that the solutions to the above problem can
be obtained by solving,

arg min
W,H

λ‖W‖2
F + γ‖H‖2

F + ‖S ⊗ (U − WH) ‖2
F (9)

where U = X + P , P being a matrix whose elements equal
pij when (i, j) ∈ S̄ and 0 when (i, j) ∈ S. Thus, the sub-
problem of minimizing W, H for fixed pij ’s is the weighted
NMF problem of Equation 9. The solution can be obtained
by alternating between the following two multiplicative up-
date steps,

H = H ⊗
W T (S ⊗ U)

W T (S ⊗ (WH)) + γH
(10)

W = W ⊗
(S ⊗ U)HT

(S ⊗ (WH)) HT + λW
(11)

where division is elementwise. The iterations are started
from the previous values of W, H maintained in an outer
loop, or from random matrices or other baseline solutions
if the first outer-loop is being executed. Once inside this
sub-routine, steps in Equations 10 and 11 are repeatedly

performed until relative improvement in the NMF objec-
tive function falls below some user-specified tolerance, or
a maximum number of iterations are exceeded. With sim-
ple modifications to the update steps above, we can handle
other loss functions such as the generalized KL-divergence
and also other regularizers such as the l1 norm of W and H.

4.2 Optimizing pij variables for fixed W, H

For fixed W, H the optimization over pij involves the fourth
and fifth term in the objective function of Equation 7, sub-
ject to the balance constraint. Let ν be the Lagrange multi-
plier corresponding to the balance constraint, 1

|S̄|

∑

ij
pij =

r. Define,

gij = Sij [V (1, oij) − V (0, oij)] (12)

Then, by forming the Lagrangian and settings its gradient
to 0, the optimal pij can be shown to be given by,

pij =
1

1 + e
gij−ν

T

(13)

where ν can be found by substituting the above in the bal-
ance constraint and solving a one-dimensional non-linear
equation in ν,

1

|S̄|

∑

ij∈S̄

1

1 + e
gij−ν

T

= r (14)

The details of solving this kind of one-dimensional non-
linear equation is given in [22].

4.3 Outer Loop & Final Recommendations
For a fixed value of T , we optimize W, H and the pij

variables using the alternating optimization scheme outlined
above. This involves repeatedly executing Equations 10, 11,
13 until some termination criterion is satisfied. In Section 5,
we report the performance of ZaOV at a fixed value of T
and the study the sensitivity to this choice with respect to
recommendation quality.

We are currently studying the behavior of full anneal-
ing optimization (not reported in this paper). In this case,
ZaOV is initially started from a high value of T . Then, the
entropy of pij dominates the objective function and the asso-
ciated maximum entropy solution under balance constraints
is obtained by setting pij = r. The W, H optimization then
essentially solves a soft ZAN problem where zeros are re-
placed by r. As T is reduced at a rate specified by an an-
nealing rate parameter, pij variables begin to harden (i.e.,
be close to 0 or 1) and behave as discrete variables, but
their optimization is initialized from the previous solution
obtained at higher value of T .

The gradual reduction of T may be seen as solving a se-
quence of optimization problems that slowly shrinks the ef-
fect of an entropy based regularizer parameterized by T .
The inner fixed-T optimization can be stopped based on KL
divergence between successive values of pij , while the outer
optimization can be stopped based on net entropy of pij

variables, as suggested in [23]. We outline the detailed steps
in the table marked Algorithm 1. Once the factor matrices
are learnt, the data matrix is reconstructed and thresholded
to extract (client, product) recommendations (see the table
marked Algorithm 2). In Section 5, we study the perfor-
mance of the algorithm in terms of precision-recall curves
generated by varying the recommendation threshold.

Algorithm 1 ZaOV

Input: data matrix: X ∈ Rm×n, cost matrix: C ∈ Rm×n

positive class ratio: r
regularization parameters: λ, γ, T
convergence parameters: τ, ǫin, ǫout, iterout, iterin, iternmf

Output: W, H that minimize Equation 7

� Intialize S, P, AnnealingRate, W, H
Set S : Sij =

√

Cij

Set P : Pij = r if (i, j) ∈ S̄ else Pij = 0
AnnealingRate = 1.5

for cycle = 1 to iterout do

for i = 1 to iterin do

U = X + P

� Update H and W keeping all other variables fixed:
W0 = W, H0 = H
for t = 1 to iternmf do

Update Ht using Equation 10
Update W t using Equation 11

� Monitor objective function for convergence
Update J t

T = JT (W t, Ht, P i)
break if

J t
T − J t−1

T < τJ t−1
T

end for

W = W t, H = Ht

Set Pold = P � To monitor convergence
Update P by using Equations 12, 14 and then 13
break if

KLdivergence(P, Pold) > ǫkl

end for

� Update T:
T = T/AnnealingRate

break if

Entropy(P) < ǫout

end for

Remarks: We close this section with some remarks on
variations of the current theme. Firstly, it may be possible to
re-arrange the alternating optimization so that pij variables
are re-optimized after each W and H update. It would be
interesting to study the effect of such a re-arrangement. Sec-
ondly, while we impose the notion of annealing and smooth
deformation of the objective function with respect to pij

variables alone, similar ideas can be used for W, H also.
One way to do this is to gradually reduce λ, γ starting from
large values to their final values. In this way, the degree
of non-convexity of the original objective function can po-
tentially be controlled along multiple dimensions in the an-
nealing process. Finally, for large-scale problems, we may
want to avoid explicitly optimizing all (i, j) variables in S̄,
but rather work with a smaller subset. Such a subset can be
randomly chosen. The question of optimal choices for this
subset leads to interesting new technical problems. Another
direction is that of choosing the regularization parameters
and the positive class ratio in a principled manner using
procedures like cross-validation.

Algorithm 2 Extracting Recommendations

Input: Factor Matrices: W ∈ Rm×k, H ∈ Rk×n

threshold

Output: Recommendation matrix: Z ∈ Rm×n

� Reconstruct the data matrix
X̂ = WH
Z = X̂ ⊗ (X̂ ≥ threshold) � elements in X̂ below

threshold are set to 0.

� Recommend product (movie) j to client i if the following
holds: Zij = 1 but Xij = 0

5. EMPIRICAL STUDY

5.1 Dataset
We conducted experiments on the MovieLens dataset avail-

able at: http://www.grouplens.org/system/files/ml-data_0.zip. The
data consists of 100,000 ratings on an integer scale from 1 to
5 given to 1642 movies by 943 users. To simulate one-class
experiments, we removed all 3 and below ratings, and rela-
beled ratings 4 and 5 as 1, to then obtain a binary customer-
movie matrix. We created random training-test splits of
positive customer-movie pairs in the ratio 60%-to-40% re-
spectively. All results reported in this section are averaged
over 10 random splits.

5.2 Evaluation
For the purposes of evaluation, we computed precision-

recall curves in the following manner. After computing W, H
from ZaOV , we extract recommendations from Algorithm
2 at a pre-defined threshold. At that threshold, we compute
the following quantities:

Precision =
#TestSetHits

#Recommendations

Recall =
#TestSetHits

#TestSetPositives

where #Recommendations is the number of user-movie rec-
ommendations made and #TestSetHits is the subset of rec-
ommended user-movie pairs that are one-valued in the test
set (these numbers depend on the recommendation thresh-
old); #TestSetPositives is the number of ones in the test
set. We report the Area under the Precision-Recall Curves
(abbreviated as AUC) generated as the recommendation
threshold is varied.

5.3 Baselines and Competing Techniques
We compared our one class approach with the the follow-

ing baselines. We mentioned the first two earlier in the paper
as routine one-class approaches. The last three are schemes
that were proposed in [20, 19] and implemented with uncon-
strained factorizations; here, we apply them with NMF.

1. ZAM: treating zeros as missing i.e., solving Equation 1
with Cij = 1, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

2. ZAN: treating zeros as negative i.e., solving Equation 2
with Cij = 1, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

3. wZAN (unif): a weighted version of ZAN where ze-
ros are treated as negative, but a uniform weight with

value less than 1 is additionally imposed (i.e., Cij <
1, 1 ≤ i ≤ m, 1 ≤ j ≤ n, in the last term of Eqn.
2). This weighting implements the intuition that the
confidence of unknown labels being negative is lower
than the confidence of positive labels. In particular, we
report the best performance over the following weights

δk =
n+

2kn0
(15)

where n+ are the number of positive labels, and n0 are
the number of zero-entries in X, with 0 ≤ k ≤ 5.

4. wZAN (item-oriented): Here, the weights are not uni-
form and the jth item / column has its own weight
proportional to m−

∑

i
Xij . [20] considered user-item

matrices and therefore refer to this column weight-
ing as item-oriented. In the sales recommendation
setting, this would be a product oriented weighting
scheme, and for movie recommendation, it would im-
pose movie-specific weights. In particular, we report
the best performance over the weights ∀j : Cij =
δk(m −

∑

i
Xij), k = 0, 1, 2, 3 where δk is the same as

defined in Equation 15 for wZAN (unif). This weight-
ing scheme implements the intuition that if an item
has less positive examples, the missing data for this
item is negative with higher probability.

5. wZAN (user-oriented): Here, the weights are not uni-
form and the ith user/ row has its own weight pro-
portional to

∑

j
Xij . In the sales recommendation set-

ting, this would be a client-oriented weighting scheme,
and for movie recommendation, it would impose user-
specific weights. In particular, we report the best
performance over the following weights ∀j : Cij =
δk

∑

i
Xij , k = 0, 1, 2, 3 where δk is the same as defined

for wZAN (unif). This weighting scheme implements
the intuition that a user has more positive examples,
it is more likely that the other items are less preferred,
that is, the missing data for this user/client is negative
with higher probability.

6. Popularity: In this scheme, each client-item pair is
ranked based on the popularity of the item (number
of clients who purchased it) and the purchase volume
of the client (number of products bought). Then a
client-product pair (i, j) is ranked as follows,

rank(i, j) = (#clients)[rank(i) − 1] + rank(j)

Recommending based on this ranking in effect attempts
to sell products (in the order of their popularity) to
clients (in the order of their loyalty).

5.4 Results
In Table 1, we report the Area under the precision re-

call curve for each of the 6 baselines, and compare them
with ZaOV for three choices of rank. For simplicity, for all
methods, we chose γ = λ = 0. All baseline methods were
initialized from the same initial random W, H. For wZAN
with uniform, item-oriented and user-oriented weightings,
we optimized the value of δk in Equation 15 over 7 choices
of k, 0 ≤ k ≤ 6.

As expected, since it only uses a small set of positive ex-
amples, ZAM returns the worst performance. It is outper-
formed by the simple popularity based heuristic. ZAN per-
forms substantially better than ZAM and Popularity-based

Table 1: Comparison of all methods in terms of Area under Precision-Recall Curve

Methods rank = 5 rank = 10 rank = 15
ZAM 1.10 ± 0.09 1.42 ± 0.14 1.44 ± 0.19

Popularity 2.29 ± 0.11 2.29 ± 0.11 2.29 ± 0.11
ZAN 25.09±0.24 26.05±0.33 24.37±0.28

wZAN (uniform) 24.38±0.37 25.47±0.47 24.03±0.49
wZAN (item based) 25.45±0.63 27.17±0.60 26.39±0.59
wZAN (user based) 16.36±0.22 16.98±0.34 17.05±0.46
ZoAV (proposed) 26.33±0.65 28.09±0.71 27.36 ±0.54

schemes. The performance of ZAN becomes worse with user-
oriented weighting, but improves with item-oriented weight-
ing – the opposite observation was made in [20] in the con-
text of news recommendation. Finally, initializing from the
best baseline solution (item-based wZAN), optimization us-
ing ZaOV further leads to statistically significant perfor-
mance improvements.

For ZoAV we used the following internal optimization pa-
rameters: iterin = 40, iterout = 1, iternmf = 100, ǫout =
10−8, ǫin = 10−6, τ = 0.0001. The following hyperparame-
ters were used: T = 30, r = 0.1. Keeping T fixed at 30,
we report performance sensitivity to r in Table 2. Similarly,
keeping r fixed at 0.1, in Table 3 we report performance
sensitity with respect to choice of T . We see that ZaOV
tends to be robust to the selection of r, as the performance
is stable for r ∈ [0.05, 0.3]. Large values of r bias the algo-
rithm towards filling up large portions of the missing values
with ones, which does not suit the sparse nature of collab-
orative filtering problems. With regards to sensitivity with
respect to choice of T , we see that ZaOV returns similar
performance for various values of T .

We are currently studying the behavior of ZaOV under
annealing, i.e., as T is gradually reduced.

Table 2: Sensitivity to r

r 0.01 0.05 0.1 0.2 0.3 0.7

AUC 0.2788 0.2825 0.2859 0.2849 0.2819 0.1528

Table 3: Sensitivity to T
T 10 50 100 1000 10000

AUC 0.2878 0.2891 0.2867 0.2887 0.2881

6. CONCLUDING COMMENTS
In this paper, we have sketched a principled, novel opti-

mization approach to one-class collaborative filtering. We
have drawn on non-convex optimization techniques previ-
ously utilized in the context of transductive SVMs for semi-
supervised learning. Our method jointly learns a non-negative
matrix factorization model for collaborative filtering while
optimizing for unknown discrete label variables. Our ap-
proach gives statistically significant improvements over 6
competing alternatives for one-class collaborative filtering
with non-negative matrix factorizations. We are currently
studying the empirical behavior of our approach with respect
to annealing, rank and regularization parameters. We also

plan to extend comparisons to other real-world one-class col-
laborative filtering problems. Between various choices of the
loss function, regularizers, alternative optimization strate-
gies and case-studies in various applications, we believe that
this topic allows for a rich research agenda.

We close with a word on real-world business deployment
scenario. Interpretability is a very important concern as sell-
ers and marketers not only need to act on a recommenda-
tion, but also have some sense of how to“pitch” the product.
Uninterpretable recommendations are more likely to be dis-
missed as not being well-tailored to the needs of the client or
the specifications of the product, as recognized by the sell-
ers and marketers. In this respect, latent factor models are
relatively weak as compared to rule-oriented recommender
systems based on frequent itemset or sub-sequence mining.
An open research direction is how to extract interpretabil-
ity from latent factors and provide meaningful explanations
for why a client ought to be sold a recommended product.
Also, business evaluation of a recommender system is some-
what different from measures like precision and recall. To
add real business value recommender systems need to go be-
yond the current practices of the sales teams, and generate
high win-probability recommendations that are also some-
what non-obvious. Finally, practical considerations such as
expected revenue and time taken to close the deal are also
important business factors in judging the value of a recom-
mendation.

7. REFERENCES
[1] R. Bell, J. Bennett, Y. Koren, and C. Volinsky. The

million dollar programming prize. In IEEE Spectrum,
2009.

[2] V. D. Blondel, N.-D. Ho, and P. V. Dooren. Weighted
non-negative matrix factorization and face feature
extraction. In Image and Vision Computing, 2008.

[3] J. S. Breese, D. Heckerman, and C. Kadie. Empirical
analysis of predictive algorithms for collaborative
filtering. In UAI, 1998.

[4] O. Chapelle, V. Sindhwani, and S. Keerthi.
Optimization techniques for semi-supervised support
vector machines. Journal of Machine Learning
Research, 9:203–233, 2006.

[5] A. Cichocki, R. Zdunek, A. Phan, and S. Amari.
Nonnegative Matrix and Tensor Factorizations:
Applications to Exploratory Multi-way Data Analysis
and Blind Source Separation. Wiley, 2009.

[6] C. Ding, T. Li, and W. Peng. On the equivalence
between non-negative matrix factorization and
probabilistic latent semantic indexing. Computational
Statistics and Data Analysis, pages 3913–3927, 2008.

[7] D. G. et. al. Using collaborative filtering to weave an
information tapestry. In Comm. ACM, 35, 1992.

[8] D. Heckerman, D. M. Chickering, C. Meek,
R. Rounthwaite, and C. Kadie. Dependency networks
for inference, collaborative filtering, and data
visualization. In Journal of Machine Learning
Research, volume 1, pages 49–75, 2000.

[9] T. Hofmann. Probabilistic latent semantic indexing.
Proceeding of SIGIR, pages 50–57, 1999.

[10] T. Hofmann. Latent semantic analysis for
collaborative filtering. In ACM Transactions on
Information Systems, 2004.

[11] P. Hoyer. Non-negative matrix factorization with
sparseness constraints. Journal of Machine Learning
Research, 5:1457–1469, 2004.

[12] T. E. J.-P. V. J. Abernethy, F. Bach. A new approach
to collaborative filtering: Operator estimation with
spectral regularization. In Journal of Machine
Learning Research, volume 10, pages 803–826, 2009.

[13] T. Joachims. Transductive inference for text
classification using support vector machines. In ICML,
1999.

[14] Y. Koren. Collaborative filtering with temporal
dynamics. In KDD, 2009.

[15] D. Lee and H. Seung. Learning the parts of objects by
non-negative matrix factorization. In Nature, 1999.

[16] C. Lin. Projected gradient methods for non-negative
matrix factorization. Neural Computation,
19:2756–2779, 2007.

[17] P. Melville, R. Mooney, and R. Nagarajan.
Content-boosted collaborative filtering for improved
recommendations. In AAAI, 2002.

[18] T. K.-I. N. A. S. Miklo Kurucz, Andras A. Benczur
and B. Torma. Who rated what: a combination of svd,
correlation and frequent sequence mining. In KDD,
2007.

[19] R. Pan and M. Scholz. Mind the gaps: Weighting the
unknown in large-scale one-class collaborative
filtering. In KDD, 2009.

[20] R. Pan, Y. Zhou, B. Cao, N. N. Liu, R. Lukose,
M. Scholz, and Q. Yang. One-class collaborative
filtering. In ICDM, 2008.

[21] J. Rennie and N. Srebro. Fast maximum margin
matrix factorization for collaborative prediction. In
ICML, 2005.

[22] V. Sindhwani and S. Keerthi. Large scale
semi-supervised linear svms. In SIGIR, 2006.
http://vikas.sindhwani.org/semisup techreport06.ps.

[23] V. Sindhwani, S. Keerthi, and Olivier. Deterministic
annealing for semi-supervised kernel machines. In
International Conference on Machine Learning, 2006.

[24] N. Srebro and T. Jaakkola. Weighted low-rank
approximations. In ICML, 2003.

[25] R. B. Yehuda Koren and C. Volinsky. Matrix
factorization techniques for recommender systems. In
IEEE Computer, volume 42 (8), pages 30–37.

