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Abstract

Learning a dictionary of basis elements with the objective of building com-
pact data representations is a problem of fundamental importance in statis-
tics, machine learning and signal processing. In many settings, data points
appear as a stream of high dimensional feature vectors. Streaming datasets
present new twists to the problem. On one hand, basis elements need to be
dynamically adapted to the statistics of incoming datapoints, while on the
other hand, early detection of rising new trends is desirable in many appli-
cations. The analysis of social media streams formed by tweets and blog
posts is a prime example of such a setting, where topics of social discussions
need to be continuously tracked and new emerging themes are required to
be rapidly detected. We formalize such problems in terms of online learn-
ing of dynamic non-negative matrix factorizations (NMF) with novel forms
of temporal regularization. We describe a scalable optimization framework
for our algorithms and report empirical results on detection and tracking
of topics over simulated document streams and real-world news stories.

1 Introduction

We consider the problem of building compact, dynamic representations of streaming datasets
such as those that arise in social media. By constructing such representations, “signal” can
be separated from “noise” and essential data characteristics can be continuously summa-
rized in terms of a small number of human interpretable components. In the context of
social media applications, this maps to the discovery of unknown “topics” from a streaming
document collection. Each new batch of documents arriving at a timepoint is completely
unorganized and may contribute either to ongoing unknown topics of discussion (potentially
causing underlying topics to drift over time) and/or initiate new themes that may or may
not become significant going forward, and/or simply inject irrelevant noise. In this paper,
we describe an online learning framework to consistently reassemble the data stream into
coherent threads of evolving components while also serving as an “early warning” system
for new, rapidly emerging trends.

While the dominant body of previous work in dictionary learning and topic modeling has
focussed on solving batch learning problems, a real deployment scenario in social media
applications truly requires forms of online learning. The user of such a system is less in-
terested in a one-time analysis of topics in a document archive, and more in being able to
follow ongoing evolving discussions and being vigilant of any emerging themes that might
require immediate action. Tracking temporal variations in social media streams is attracting
increasing interest[17]. Several papers have proposed dynamic topic and online dictionary
learning models (see [3, 11, 4, 9, 14, 18, 2] and references therein) that either exploit tempo-
ral order of documents in offline batch mode (using variational inference or Gibbs sampling
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techniques) or are limited to handling a fixed bandwidth of topics with no explicit algorith-
mic constructs to attempt to detect emerging themes early.

In this paper, we propose a framework for online dictionary learning to handle streaming
non-negative data matrices with possibly growing number of components. Our methods are
rooted in non-negative matrix factorizations (NMF) [12, 16] whose unregularized variants
for (generalized) KL-divergence minimization can be shown to be equivalent to pLSI [7],
a classic probabilistic topic modeling algorithm. For squared loss, NMF finds a low-rank
approximation to a data matrix X by minimizing ‖X−WH‖2fro under non-negativity and

scaling constraints on the factors W and H. It is common to add some form of l1/l2
regularization e.g., to encourage sparse factors and prevent overfitting. If X is an N × D
document-term matrix, then W is a N ×K matrix of topic encodings of documents while
H is a K × D matrix of topic-word associations, whose rows are the dictionary elements
learnt by the NMF approach.

Given streaming matrices, we learn a sequence of NMFs with two forms of temporal reg-
ularization. The first regularizer enforces smooth evolution of topics via constraints on
amount of drift allowed. The second regularizer applies to an additional “topic bandwidth”
introduced into the system for early detection of emerging trends. Implictly, this regular-
izer extracts smooth trends of candidate emerging topics and then encourages the discovery
of those that are rapidly growing over a short time window. We formulate this setup as
minimization of an objective function which can be reduced to rank-one subproblems in-
volving projections onto the probability simplex and SVM-like optimization with additional
non-negativity constraints. We develop efficient algorithms for finding stationary points of
this objective function. Since they mainly involve matrix-vector operations and linear-time
subroutines, our algorithms scale gracefully to large datasets. We empirically study how
temporal priors affect the quality of detection and tracking in streaming topic modeling
problems.

It should be noted that our work is on a different vein than the topic detection and tracking
methods previously developed in the information retrieval community [6, 1]. These methods
typically work with an initial collection of training documents known to be on certain topics.
Then as streaming documents come in, their proximity to training documents is computed
using some measure of document similarity. If the similarity is less than a threshold, a new
topic is considered to have emerged, else the document is merged with known topics (and the
topic centroid is updated). Such an approach is very sensitive to noise in the stream - each
”noisy” document is a potential candidate for a new topic. In contrast, our approach is more
robust to noise as it works with a short time window and separates signal from noise based
on how well a candidate topic reconstructs the recent elements of the data stream while
showing a rising temporal trend. We employ constrained optimization and trend filtering
techniques towards these objectives.

In the sequel we abuse notation to denote hi as the i
th row of H and hij = Hij . ∆D denotes

the D dimensional simplex. [K] refers to the set {1, 2 . . . K} and 0 refers to the vector of
all 0’s of appropriate dimension.

2 Dynamic Dictionary Learning

Let {X(t) ∈ R
N(t)×D, t = 1, 2...t, ..} denote a sequence of streaming matrices where each row

of X(t) represents an observation whose timestamp is t. In topic modeling applications over
streaming documents, X(t) will represent the highly sparse document-term matrix observed
at time t. We use X(t1, t2) to denote the document-term matrix formed by vertically
concatenating {X(t), t1 ≤ t ≤ t2}. At the current timepoint t, our model consumes the
incoming data X(t) and generates a factorization (W(t),H(t)) comprising of K(t) topics.
The design of this factorization follows from two considerations: (1) The first K(t − 1)
topics in H(t) must be smooth evolutions of the K(t − 1) topics found upto the previous
timepoint, H(t− 1). We call this the evolving set and introduce an evolution parameter, δ
which constrains the evolving set to reside within a box of size δ on the probability simplex
around the previously found topics. With minor modifications, δ can also be made topic or
word-specific e.g., to take topic volatility or word dominance into account. (2) The second
consideration is the fast detection of emerging topics. At each timepoint, we inject additional
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topic bandwidth for this purpose. We call this the emerging set. Thus the topic variable
H(t) can be partitioned into an evolving set of K(t− 1) topics, Hev, and an emerging set of
Kem topics Hem. Furthermore, we assume that emerging topics can be distinguished from
noise based on their temporal profile. In other words, the number of documents that a true
emerging topic associates with begins to rapidly increase. For this purpose, we introduce a
short sliding time window ω over which trends are estimated. In the following section, we
define a novel regularizer Ω(Wem) that consumes the document-topic associations for the
emerging bandwidth and penalizes components that are static or decaying so that learnt
emerging topics are more likely to be ones that are rising in strength. (3) We assume that
topics in the emerging set become part of the evolving set going forward, unless some of
them are discarded as noise by manual guidance from the user or using criteria such as net
current strength. In our experiments, we retain all topics in the emerging set.

The discussion above motivates the following objective function that is optimized at every
timepoint t.

(W⋆,H(t)) = argmin
W,H

‖X(t− ω, t)−WH‖
2
fro + µΩ(W) (1)

This objective function is minimized under the following constraints.

W,H ≥ 0 (2)

D
∑

j=1

Hij = 1 ∀i ∈ [K(t− 1) +Kem] (3)

min(Hij(t− 1)− δ, 0) ≤ Hij ≤ max(Hij(t− 1) + δ, 1), ∀i ∈ [K(t− 1)], ∀j ∈ [D] (4)

We then extract W(t) from the bottom rows of W⋆ that correspond to X(t). The system
is then said to have tagged the ith document (row) in X(t) with the most dominating topic
argmaxj W(t)(i, j) which gives a clustering of documents. Note that the regularizer, Ω(W),
defined in the next section, implicitly only operates on those columns of W that correspond
to emerging topics.

The solution W⋆,H(t) are also used for initializing parts of W,H in the next run (de-
tails ommitted). This hot-start mechanism significantly accelerates convergence. In the
next section, we define the emergence regularization operator Ω(W) and then present our
optimization algorithm.

3 Emergence Regularization

In this section, we formulate the regularization operator Ω(W) by chaining together trend
extraction with a margin-based loss function to penalize static or decaying topics. We begin
with a brief introduction to trend filtering.

Hodrick-Prescott (HP) Trend Filtering: Let {yt}
T

t=1 be a univariate time-series which

is composed of an unknown, slowly varying trend component {xt}
T

t=1 perturbed by random

noise {zt}
T

t=1. Trend Filtering is the task of recovering the trend component {xt} given {yt}.
The Hodrick-Prescott filter is an approach to estimate the trend assuming that it is smooth
and that the random residual is small. It is based on solving the following optimization
problem:

argmin
{xt}

1

2

T
∑

i=1

(yi − xi)
2 + λ

T−1
∑

t=2

((xt+1 − xt)− (xt − xt−1))
2

(5)

Let us introduce the second order difference matrix D ∈ R
(T−2)×T such that

D(i, i) = 1 D(i, i+ 1) = −2 and D(i, i+ 2) = 1 ∀i ∈ [T − 2]

Then, it is easy to see that the solution to the optimization problem of Equation 5 is given
by, x = [I + 2λD⊤D]−1y, where we use the notation y = (y1 . . . yT )

T ,x = (x1 . . . xT )
T .

We use F to denote [I + 2λD⊤D]−1, the linear smoothing operator associated with the
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Hodrick-Prescott Filter. Given the time series y, the Hodrick-Prescott (HP) trend estimate
simply is x = Fy.

Loss Function for Measuring Emerging Trend: Let x = Fy be the HP trend of the
time series y. Let D be the forward difference operator, i.e., the only non-zero entries of D
are: Di,i = −1 and Di,i+1 = 1. If z = Dx, then zi = xi+1−xi reflects the discrete numerical
gradient in the trend x. Given zi, we define a margin based loss function (the ℓ2 hinge loss),
L(zi) = ci max(0, δ−zi)

2, where if the growth in the trend at time i is sufficient, i.e., greater
than δ, the loss evaluates to 0. If the growth is insufficient, the loss evaluates to ci(δ − zi)

2

where ci is the weight of timepoint i which typically increases with i. For a vector z, the
loss is added over the components. In terms of the original time series y, this loss function
is,

L(y) =

T−1
∑

i=1

ci max(0, δ − (DFy)i)
2 (6)

Optimization Problem: As documents arrive over t ∈ [T ], we use S to denote a T ×N
time-document matrix, where S(i, j) = 1 if the document j has time stamp i. Noting that
each column w of W denotes the document associations for a given topic, Sw captures the
time series of total contribution of the topic w. Finally, we concretize (1) as the following
optimization problem

argmin
W,H≥0

‖X−WH‖
2
fro + µ

∑

wi∈Wem

L(Swi) (7)

subject to constraints in equations 3 and 4.

4 Optimization algorithms

We approximate X as the sum of rank-one matrices wih
⊤
i and optimize cyclically over

individual wi and hi variables while keeping all other variables fixed. This results in three
specific sub-problems, each of which requires an efficient projection of a vector onto an
appropriate space. Optimization of rank-one subproblems has been previously shown to be
very effective for standard NMFs [10, 5] and is also reminiscent of the K-SVD approach for
dictionary learning [8].

Optimization over hi: Holding all variables except hi fixed and omitting additive

constants independent of hi, (7) can be reduced to argminhi∈C

∥

∥R−wih
⊤
i

∥

∥

2

fro
where

R = X −
∑

j 6=i wjh
⊤
j is the residual matrix, independent of hi. Simple algebraic oper-

ations yield that the above is equivalent to

argmin
hi∈C

∥

∥

∥
hi −R⊤wi/‖wi‖

2
∥

∥

∥

2

(8)

Case 1: hi is evolving: For an evolving topic, the optimization needs to be performed
under the constraints (4) and (3). Thus the optimum h⋆

i is obtained by projection onto the
set C = {hi : hi ∈ ∆D, lj ≤ hij ≤ uj} for appropriate constants lj and uj . This is equivalent
to a projection onto a simplex with box constraints. Adapting a method due to [15], we can
find the minimizer in O(D) time i.e. linear in the number of coordinates.

Case 2: hi is emerging: For an emerging topic, C = {hi : hi ∈ ∆D} and the optimization
(8) becomes equivalent to a projection onto the simplex ∆D. The same algorithm [15] again
gives us the minimizer in linear time O(D).

Optimization over evolving wi: When wi ∈ Wev, the second term in (7)
does not contribute and the corresponding optimization problem boils down to

w⋆
i = argminwi≥0

∥

∥R−wih
⊤
i

∥

∥

2
. Similar to (8), simple algebraic operations yield

that the above minimization is equal to the following simple projection problem,

argminwi≥0

∥

∥

∥
wi −Rhi/ ‖hi‖

2
∥

∥

∥

2

for appropriate residual matrix R. The projection set
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C now is just the non-negative orthant, for which there is a closed form minimizer:

wi = max
(

0, 1
‖hi‖

2 (Rhi)
)

, where sparse matrix-vector products against R can be efficiently

computed, i.e., Rh = Xh−
∑

j 6=i wj(h
⊤
j h).

Emerging wi: When wi ∈ Wem, the second term in (7) is active and the corre-

sponding optimization problem looks like: argminwi≥0

∥

∥R−wih
⊤
i

∥

∥

2
+ µL(Swi). Omit-

ting the terms independent of wi, simple algebra yields that the above is equivalent to:

argminwi≥0

∥

∥

∥
wi −Rhi/ ‖hi‖

2
∥

∥

∥

2

+ µL(Swi)/ ‖hi‖
2
. Noting that we choose L to be the ℓ2

hinge loss, this leads to,

argmin
wi≥0

∥

∥

∥
wi −Rhi/ ‖hi‖

2
∥

∥

∥

2

+
µ

‖hi‖
2

T−1
∑

j=1

cj max(0, δj − q⊤
j wi)

2

where q⊤
j = (DFS)j,: the j

th row ofDFS. This can be converted into a generic minimization
problem of the following form,

min
w≥0

J(w) =
∑

i

max (0, ci(δi − 〈w,xi〉))
2
+

λ

2
‖w −w0‖

2
(9)

for some constant w0. This is precisely the SVM optimization problem with additional
non-negativity constraints on wi. This objective is minimized using a projected gradient
algorithm on the primal objective directly, as it is smooth and therefore the gradient is
well defined. Thus w(k+1) =

∏
(

w(k) − ηk∇J(w(k))
)

where
∏

is the projection operator
∏

(s) = max(s, 0). The best rate ηk at the kth step is chosen according to [13].

5 Empirical Studies

The goal of our empirical study is to understand the influence of temporal regularization
(evolution and emergence parameters) on the effectiveness of topic detection and tracking.
To enable quantitative evaluation, we presented two topic-labeled datasets to our algorithm
as streams and the resulting topics generated by the system were benchmarked against
ground truth topic assignments.

Datasets: We used two datasets for our experiments. The Simulation dataset consists
of 1000 documents with 2500 terms divided into 25 topics accummulated over 31 days. We
generated a (nearly) low-rank document-term matrix, X = WH + S, where S is a noise
matrix with sparsity 0.001 and non-zero elements randomly drawn from a uniform distribu-
tion on the unit interval. This dataset comprises of 25 topics whose term-distributions (as
specified by the 25 rows of H) are random 2500-dimensional points on the topic simplex with
sparsity 0.01. These topics are then randomly mixed (as specified in W) to create the doc-
uments such that each topic dominates 40 documents with atleast 80% mixing proportions
and each document on average contains 2.5 topics. These documents are then associated
with timestamps such that topic i, i > 5 steadily emerges at timepoint i with a time profile
as shown in the left subfigure in Figure 1. These emerging topics arise in the background of
5 initial static topics leading to an overall profile of temporal dynamics as shown (stacked
area chart) in the right subfigure of Figure 1. We choose the hinge parameter to be µ = 5
and emerging bandwidth of 1 per timepoint for this dataset. In our experiments, we use
a sliding window of ω = 7 timepoints. The second dataset is drawn from the Nist Topic
Detection and Tracking (TDT2) corpus1 which consists of news stories in the first half of
1998. In our evaluation, we used a set of 9394 documents represented over 19528 terms and
distributed into the top 30 TDT2 topics over a period of 27 weeks. We choose the hinge
parameter to be µ = 20 and emerging bandwidth of 2 per week for this dataset. In our
experiments, we use a sliding window of ω = 4 weeks.

Evaluation Metrics: For tracking, we use F1 scores, as commonly reported in topic
detection and tracking (TDT) literature. We point the reader to [4] for a precise def-
inition of microaveraged F1 used in our experiments. We define a second performance

1http://www.nist.gov/speech/tests/tdt/tdt98/index.htm
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metric to capture how rapidly an emerging topic is “caught” and communicated to the
user. Recall that a topic is communicated by the top keywords that dominate the asso-
ciated term distribution in H(t). We first define true topic distributions as Htrue(t) =
argminH>0 ‖X(1, t) − WtrueH‖2fro where Wtrue is set using true topic labels. Next, for
each true topic i, we compute first detection time, which is the first timepoint at which
the system generates a topic distribution in H(t) that is within a threshold of ǫ from the
true topic, as measured by symmetric KL-divergence. We then record the percentage of
documents missed before detection, and take the average of this miss rate across all true
topics.

Results and Discussion: Figure 2 shows tracking performance as a function of the evo-
lution parameter δ. When δ = 0, the system freezes a topic as soon as it is detected not
allowing the word distributions to change as the underlying topic drifts over time. When
δ = 1, the system has complete freedom in retraining topic distributions causing no single
channel to remain consistently associated with an underlying topic. It can be seen that both
these extremes are suboptimal. Tracking is much more effective when topic distributions
are allowed to evolve under sufficient constraints in response to the statistics of incoming
data. In Figure 2 we turn to the effectivness of emergence regularization. The figure shows
how much information on average is missed before underlying topics are first detected, as
a function of the emergence parameter µ. We see that increasing µ, for a fixed choice of δ,
typically reduces miss rates causing topics to be detected early. As δ is increased, topics
become less constrained and therefore provide additional bandwidth to drift towards emerg-
ing topics, therefore lowering the miss rate curves. However, this comes at the price of
reduced tracking performance. Thus, for a fixed amount of available topic bandwidth, there
is a tradeoff between tracking and early detection that can be navigated with the choice
of µ and δ. Finally, the top keywords as per true word distributions (estimated by Htrue)
and best matched system generated topics show excellent agreement (not shown for lack of
space).

Figure 1: Temporal profile of an emerging topic and overall dynamics in Simulated dataset.
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