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Abstract— We propose a novel anomaly detection framework
for a fleet of hybrid aerial vehicles executing high-speed package
pickup and delivery missions. The detection is based on machine
learning models of normal flight profiles, trained on millions of
flight log measurements of control inputs and sensor readings.
We develop a new scalable algorithm for robust regression
which can simultaneously fit predictive flight dynamics models
while identifying and discarding abnormal flight missions from
the training set. The resulting unsupervised estimator has a very
high breakdown point and can withstand massive contamina-
tion of training data to uncover what normal flight patterns
look like, without requiring any form of prior knowledge of
aircraft aerodynamics or manual labeling of anomalies upfront.
Across many different anomaly types, spanning simple 3-
sigma statistical thresholds to turbulence and other equipment
anomalies, our models achieve high detection rates across
the board. Our method consistently outperforms alternative
robust detection methods on synthetic benchmark problems.
To the best of our knowledge, dynamics modeling of hybrid
delivery drones for anomaly detection at the scale of 100 million
measurements from 5000 real flight missions in variable flight
conditions is unprecedented.

I. INTRODUCTION

As aerial robots [1], [2] become increasingly capable
of complex navigation, perceptual reasoning and ability to
learn from experience, it is expected that a large number of
delivery missions will soon be executed by small air-vehicles
taking off autonomously, flying far beyond line of sight over
densely populated areas, hovering inside a residential zone
within touching distance of humans to deliver the package,
and returning to their “home” upon mission completion.
Ensuring as high degree of operational reliability and safety
as passenger airplanes is critical for delivery drones to
achieve economies of scale.

While simple statistical thresholds and logical rules can
be hand-designed to trigger on frequently occurring prob-
lematic events (e.g., battery too low, or control surface non-
functional), they cannot exhaustively cover all potential fu-
ture failure modes which are unknown apriori, particularly as
the fleet grows in mission complexity and vehicle types. With
this motivation, we develop an anomaly detection system
based on a machine-learning model that is continuously
trained on thousands of flight logs. When this model reports
large predictive errors for a new flight, the vehicle can be
flagged for manual inspection and possibly grounded for
safety until the issue is resolved. Importantly, the system is
designed to discover normality and does not require upfront
labeling of normal and anomalous missions; indeed, sifting
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Fig. 1. Hybrid Aerial Vehicle for High-speed Package Pickup and Delivery

through thousands of flight logs comprising of dozens of time
series looking for subtle abnormalities stretches the limits of
what is manually feasible.

As in prior work [3], [4], [5], [6] on fault detection and
fleet monitoring of aircrafts [7], [8], [9], our framework
relies on learning a predictive model of flight dynamics.
The linear and angular acceleration of an aircraft depends
on the aerodynamic forces it is subject to, which are a
function of the vehicle state, control commands, dynamic
pressure and other flight condition variables. As [3] show,
simple linear or quadratic models trained on historical flight
logs show impressive predictive power. The norm of the
predictive residuals at a given time for a given flight, or the
mean residual over an entire flight can be used as thresholds
for anomaly detection. However, in contrast to prior work
that focused on large fixed wing passenger aircrafts and
cruising performance only, we are interested in monitoring
much smaller delivery drones [10] across an entire flight
mission that includes takeoff, package delivery, and landing.
Furthermore, to span a full range of conditions from stable
hovering to energy efficient cruising, we work with a hybrid
small air-vehicle schematically shown above in Figure 1. An
array of 12 vertically mounted electric motors provides thrust
for hovering flight. Two forward thrust motors, two ailerons,
and two ruddervators are used primarily for cruise flight.

This hybrid configuration makes the task of building
an accurate model of the system more challenging as the
aerodynamic interactions are more complex than on larger
fixed-wing aircraft (e.g. rotor cross-flow, flow around small
structures). As an alternative to pushing the boundary of
computational fluid dynamics tools, or performing complex
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and expensive measurement campaigns using wind tunnels,
learning models from raw flight data turns out to be surpris-
ingly effective.

Trained on among the largest scale real-world deliv-
ery drone data reported to date, our detectors successfully
flag missions with disabled actuators, off-nominal hard-
ware conditions, turbulence and other anomalous events.
Our approach is based on a combination of non-parametric
dynamics modeling and a novel algorithm for robust and
scalable least trimmed squares estimation, which may be of
independent interest.

II. DYNAMICS LEARNING AND ANOMALY DETECTION

In this section, we introduce notation and formulate the
problem abstractly. Consider a robot interacting with its envi-
ronment according to an unknown continuous-time nonlinear
dynamical system,

ẋ(t) = f(x(t), u(t))

where states x(t) ∈ Rn and controls u(t) ∈ Rm. Assume that
a fleet of such robots collectively and continuously execute
missions generating trajectory logs of the form,

τi = {(xi(t), ui(t), ẋi(t))}Tit=0

where i indexes the mission.
From N mission logs, one may naturally hope to learn

f over a suitable family of function approximators F by
solving a least squares problem,

f∗ = arg min
f∈F

N∑
i=1

r(τi, f) (1)

where r denotes the predictive residual,

r(τ, f) =
1

T

T∑
t=1

‖ẋ(t)− f(x(t), u(t))‖22

While this is reminiscent of model-based Reinforcement
Learning, our interest in this paper is not to learn controllers,
but rather to turn the dynamics estimate f∗ into a detector
that can flag mission abnormalities. For any trajectory τ
generated by a new mission, the per time-step residual norm
‖ẋ(t) − f∗(x(t), u(t))‖22 is a measure of “instantaneous
unexpectedness” and the mean residual across time, r(τ, f∗),
defines an anomaly score for that mission.

Chu et. al. [3] adopt this approach for predicting linear
and angular acceleration of the aircraft. By using linear
and quadratic functions, a single pass over the mission logs
suffices for least squares estimation.

In practice, such an approach to anomaly detection may
become fragile in the face of the quality of real world
data. When the set of training missions is contaminated with
operational failures or carry subtle signatures of future catas-
trophes (e.g., sensor degradation), the detector may extract
a misleading characterization of normal behavior. Unlike
model-based RL settings where all collected trajectories may
be useful for learning the unknown dynamics, for anomaly
detection the learning process has to simultaneously filter

out missions for such abnormalities while fitting a model
to the data that remains. In the absence of such a filtering
mechanism, it is well known that ordinary least squares
estimators and associated anomaly detectors may degrade in
quality due to the presence of highly abnormal missions in
the training set.

III. ROBUST DYNAMICS LEARNING

A measure of robustness of an estimator is the finite-
sample breakdown point [11] which in our context is the
fraction of mission trajectories that may be arbitrarily cor-
rupted so as to cause the parameters of the estimator to
blowup (i.e., become infinite). For least squares estimators
or even least absolute deviations (l1) regressors, the finite
sample breakdown point is 1

N making them fragile in the
presence of heavy outliers in the training set. A more robust
alternative is trimmed estimators. For any f , denote the order
statistics of the residuals as,

r(τ[1], f) ≤ r(τ[2], f) ≤ . . . ≤ r(τ[N ], f)

Then we define the trimmed estimator [12], [11], [13] as
the sum of the smallest k residuals,

f∗ = arg min
f∈F

k∑
i=1

r(τ[i], f) (2)

The breakdown point of such an estimator is N−k+1
N where

k is the number of missions that should not be trimmed. In
practice, k is unknown and is treated as a hyper-parameter.
By making k small enough, the breakdown point can even
be made larger than 50%.

The price of strong robustness is computational complex-
ity of least trimmed squares estimation [14]: for an exact
solution, the complexity scales as O(Nd+1) for d >= 3
dimensional regression problems. The optimization task is
both non-smooth and non-convex. Due to its combinatorial
flavor, it is not amenable to standard gradient techniques
or least squares solvers even for linear models. Thus, the
development of practical approximate algorithms [15], [16] is
of significant interest. We now develop a novel algorithm for
robust learning based on smoothing the trimmed squares loss.
The algorithm is inspired by Nesterov’s smoothing procedure
for minimizing non-smooth objective functions [17], and is
also closely related to Deterministic Annealing [18], [19],
[20] methods for combinatorial optimization.

A. Smoothing the Trimmed Loss

Consider the function that maps a vector r ∈ RN to the
sum of its k smallest elements,

hk(r) =

k∑
i=1

r[i] where r[1] ≤ r[2] ≤ . . . ≤ r[N ]



This function admits a smoothing [21], [22] defined as
follows,

hTk (r) = min
α∈RN

αT r + T

N∑
i=1

H(αi) (3)

s.t:
N∑
i=1

αi = k, 0 ≤ αi ≤ 1 (4)

where H(u) = u log(u) + (1− u) log(1− u) (5)

Above, T is a smoothing parameter also referred to as
the “temperature” in the annealing literature. Intuitively, if
αi tends to zero, the corresponding mission is considered
too anomalous for training and is trimmed away. The α’s
may also be interpreted as probability distributions over
binary indicator variables encoding whether or not to trim
a mission. As such, when T is high, the smoothed objective
is dominated by the entropy of the α’s and tend to approach
the uniform distribution ∀i : αi = k

N . As T → 0, the weights
harden towards binary values. This strategy of starting with a
highly smoothed proxy to a non-convex non-smooth function
and gradually increasing the degree of convexity is the cen-
tral idea of homotopy [23], continuation [24] and graduated
non-convexity [25], [26] methods for global optimization. In
the ideal case, the highly smoothed function is close to being
convex allowing the global minimum to be found efficiently.
As smoothing is reduced, one hopes that following the
continuous path of the minimizer would lead to the global
minimum. Figure 2 shows how spurious local minima can be
eliminated due to smoothing, making the optimization task
much easier.

Fig. 2. Left: Normal data follows y = mx where the slope is m = 1.
Right: trimmed loss and its smoothing (T = 0.025) as a function of m.

In particular, the smoothing discussed above has the fol-
lowing properties [21], [22]:
• hTk is a concave function.
• hTk is continuously differentiable.
• hTk (r) − TR ≤ hk(r) ≤ hTk (r) holds for some fixed

constant R.

B. Optimizing the Smoothed Trimmed Loss

With this smoothing of the trimmed loss, for a fixed
number of k missions to retain, we consider the following
optimization problem,

f∗ = arg min
f∈F

hTk (r(f)), r(f) = [r(τ1, f) . . . r(τN , f)]

Equivalently,

f∗ = arg min
f∈F,α∈RN

N∑
i=1

αir(τi, f) + TH(αi) (6)

s.t. :

N∑
i=1

αi = k, 0 ≤ αi ≤ 1 (7)

We now describe a procedure that alternates between a
fitting phase and a trimming phase up to convergence. Both
these phases are fast, efficient and easily scale to thousands
of missions and millions of measurements. We initialize the
optimization with α = k

N which corresponds to the non-
robust least squares estimator and the limit of T →∞.

1) Fitting Phase: We consider linear combinations of
fixed nonlinear basis functions,

f(x, u) = Wφ(x, u)

where φ : Rn+m 7→ Rd is a nonlinear feature map and W
is a n× d parameter matrix.

For fixed α’s, optimizing W is a weighted least squares
problem which admits a fast single pass solution,

W = [A+ λId]
−1
B where, (8)

A =

N∑
i=1

αi
∑
t

φ(xi(t), ui(t))φ(xi(t), ui(t))
T (9)

B =

N∑
i=1

αi
∑
t

φ(xi(t), ui(t))ẋi(t)
T (10)

2) Trimming Phase: For fixed W , we compute the vector
of N residuals given by ri = r(τi,W ). The α optimization
takes the form [17],

αi =
1

1 + exp ( ri−νT )
(11)

where the scalar ν satisfies the nonlinear equation,

ψ(ν) =

N∑
i=1

1

1 + exp ( ri−νT )
− k = 0 (12)

The root of this equation can be easily solved e.g., via the
bisection method noting that ψ(a) < 0 for a = mini ri −
T log N−k

N and ψ(b) > 0 for b = maxi ri − T log N−k
N

provides an initial bracketing of the root.

C. Nonlinear Dynamics via Random Fourier Features

We experimented with both linear models as well as
nonlinear random basis functions [27], [28] of the form,

φ(x, u) =

√
2

d
cos(σ−1Gx+ σ−1Hu+ b) (13)

where Gij , Hij ∼ N (0, 1), b ∼ U(0, 2π)

and G ∈ Rd×n, H ∈ Rd×m (14)

Here, the feature map dimensionality d controls the capacity
of the dynamics model. In particular, as d→∞, inner prod-
ucts in the random feature space approximate the Gaussian



Kernel [29],

φ(x, u)Tφ(x̄, ū) ≈ e−
‖x−x̄‖22+‖u−ū‖22

2σ2

The implication of this approximation is that each component
of the learnt dynamics function is a linear combination of
similarity to training mission measurements, in the following
sense.

fj(x, u) = wTj φ(x, u) ≈
N∑
i=1

∑
t

βj,i,te
− ‖x−xi(t)‖

2
2+‖u−ui(t)‖

2
2

2σ2

for some coefficients βj,i,t and where wTj refers to the j-
th row of W . However, the random feature method scales
linearly in the number of measurements, as opposed to
cubically for β when working with exact kernels. At the
price of losing this linear training complexity and globally
optimal solution, one may also embrace deep networks for
this application to parameterize the dynamics model.

D. Comparison on Synthetic Missions

We generate synthetic 8-dimensional input and 3-
dimensional output time series following a linear model
as follows. The output time series for normal missions
carry moderate Gaussian noise, but anomalous missions are
heavily corrupted by non-Gaussian noise sampled uniformly
from the interval [0, 10]. 200 training and 200 test missions,
each with 100 time steps were generated with 50% anomalies
following the procedure below. The anomaly labels were
discarded for training and only used for evaluation.

x(t) ∈ R8 = cos(g ∗ t+ b), g, b ∈ R8, gi, bi ∼ N (0, 1)

y(t) ∈ R3 = Wx(t) + ε(t), W ∈ R3×8

ε(t) ∈ R3 :=

{
εi ∼ N (0, 1) for normal
εi ∼ Unif(0, 10) for anomaly

Examples of output profiles in normal and anomalous mis-
sions are shown below in Figure 3.

Fig. 3. Normal (left) and Anomalous (right) output profiles.

Figure 4 shows how alternating optimization of the
smoothed trimmed loss (with temperature T=1.0) leads to
monotonic descent in the sum of the smallest k = 100
residuals, a consequence of our smoothing formulation. The
optimization converges to a set of mission weights (α’s) that
clearly trim away nearly all the anomalies present in the
training set despite heavy 50% corruption and no explicit
anomaly labels provided to the algorithm.

Figure 5 shows a comparison of anomaly detectors based
on the proposed trimming approach against pure least squares

Fig. 4. Objective vs Iterations (left) and Mission Weights (α’s learnt)

models, and several M -estimators proposed in the Robust
Statistics [11] literature. Due to its non-robustness, the least
squares detector is hurt the most due to corruptions in the
training set. By limiting outlier influence, robust loss func-
tions such as l1 and huber show improved performance. Yet,
they are outperformed by the proposed trimming approach
which gives perfect detection despite massive corruption of
the training data.

Fig. 5. Smoothed Trimmed (proposed) vs Robust estimators.

IV. ANOMALY DETECTION FOR DELIVERY DRONES

A. Missions

We now report results on data collected from a fleet
of delivery drones flying in multiple environments on real
delivery flight missions. A typical mission consists of a
takeoff, package pickup, a cruise phase to deliver the pack-
age, and subsequent landing. To the best of our knowledge,
machine learning on real delivery drone data at this scale
is unprecedented: 5000 historical missions prior to a cutoff
date generating around 80 million measurements are used
for training. Trained detectors were tested on 5000 outdoor
missions after the cutoff date. By contrast, recent papers
have reported results on 20 to 50 test missions in controlled
lab environments [30], [31]. Our large-scale flight log data
covers multiple vehicle types, package configurations and
variable temperature and wind conditions. Additionally, the
mission logs are mixed with a variety of research and
development flights that include flight envelope expansion,
prototype hardware and software, and other experiments
designed to stress-test the flight system. Flight missions



Fig. 6. Input Signals for Anomaly Detection

Fig. 7. Detector predictions: x-y-z accelerations for normal (top), and anomalous (bottom) flights with error spikes.

generally last approximately 5 minutes including several
kilometers of cruise flight.

B. Signals

Figure 6 shows the input signals used for training models
to predict linear and angular acceleration of the vehicle. Each
input time series is re-scaled so that values lie in the interval
[−1.0, 1.0]. Training a nonlinear trimmed model with d =
100 random Fourier features on 80 million measurements,
including data preprocessing, is completed within 1.15 hours
on a single CPU. Predictions on a normal and an anomalous
test mission are shown in Figure 7. The large spike towards
the end of the anomalous test mission causes the mean
residual error to be large, flagging the flight as anomalous.

C. Control

The vehicle’s position, velocity, and attitude estimates
from an EKF-based state estimator are compared with com-
mands generated by a high-level mission planning system.
The controller generates actuator commands to reduce errors
between the state estimate and commands. The controller
incorporates a real-time airspeed estimate to properly allocate
control between individual hover motors and aerodynamic
control surfaces throughout the airspeed envelope.

D. Anomaly Types

We report detection rates for multiple anomaly types:
• are-basic-stats-exceeded: Basic statistical measures

such as velocity command error, error from commanded

path, pitch, roll, Root Mean Squared pitch and roll
error, pitch and roll torque commands are more than
3 standard deviations from the mean computed over the
entire training set.

• has-flight-dynamics-issue: The particular flight had an
issue where the flight dynamics were off-nominal due
to various factors such as an intentionally disabled
actuator or other off-nominal airframe modifications to
test system robustness.

• is-high-wind: The prevailing wind speed is greater than
10m/s, which qualitatively indicates elevated levels of
turbulence.

Approximately 12% of the test set of 5000 missions has these
anomalies.

E. Detection Performance

Figure 8 shows the performance of our nonlinear trimmed
detectors (d = 100, T = 1.0, k = 0.75N ) on a test set of
5000 missions. On all three anomaly types, the area under
the True-Positive-Rate vs False-Positive-Rate curve exceeds
0.90. The detector coverage goes beyond simple statistical
anomaly measures firing reliably across a multitude of factors
such as disabled actuators, otherwise off-nominal hardware
conditions and the vehicle experiencing turbulent conditions.

F. Effectiveness of Trimming

Figure 9 shows the smoothed distribution of mission
weights learned by the proposed trimming algorithm. The



Fig. 8. Anomaly Detection Performance on 5000 Test Missions

Fig. 9. Distribution of Training Mission Weights

distribution of α’s peaks close to 0 in comparison to the
mean over the entire training set which is close to 1.0. This
confirms the ability of the proposed method to successfully
filter out anomalies from the training set, in order to ex-
tract normal flight patterns, without requiring any form of
supervision. Without nonlinear modeling and trimming, we
observed performance degradation in an analysis across finer
anomaly type categories.

G. Case Studies

Two example case studies are presented to illustrate the
utility of the anomaly detection algorithm.

1) Hover Motor Testing: A test flight was performed
with one of the 12 hover motors purposefully disabled. A
disabled hover motor is expected to require additional thrust
and torque from the remaining hover motors to maintain
trimmed flight and therefore represents a different flight
dynamics model. The unsupervised anomaly detection algo-
rithm successfully flagged this particular flight as anomalous.

Fig. 10. Nominal Hovering vs Intentionally Failed Hover Motor

Figure 10 shows a comparison between a nominal and the
failed hover motor test flight. In this case the prediction
residuals are large compared to the nominal flight.

Fig. 11. Low Wind vs High Wind Hovering Dynamics

2) Impact of Wind Conditions: We compare two oth-
erwise nominal steady hovering flights differing only in
their anomaly score. In this case, the algorithm flagged a
flight in high turbulent wind conditions as more anomalous
than one in light wind conditions. This is reasonable since
wind represents an unmodeled random disturbance and not
intended to be part of the learnt bare airframe flight dynamics
model. Figure 11 shows a comparison of the total thrust
command and roll angle for each case. The high wind case
has a lower overall thrust command due to lift from the
wing, but is much more variable as the controller is rejecting
the random disturbances. Roll angles in the high wind case
are up to 25 deg as the vehicle is maneuvering to maintain
its hovering position. Flight data in low-wind conditions is
desirable for system identification applications where only
the bare-airframe dynamics are desired. This algorithm can
be used as a preprocessing step in a large dataset to find data
with the least amount of unmodeled disturbances.
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