
Learning Stabilizable Nonlinear Dynamics

with Contraction-Based Regularization

Sumeet Singh1, Spencer M. Richards1, Vikas Sindhwani2, Jean-Jacques E. Slotine3, and
Marco Pavone1

1Department of Aeronautics and Astronautics, Stanford University ∗
2Google Brain Robotics, New York †

3Department of Mechanical Engineering, Massachusetts Institute of Technology ‡

March 24, 2020

Abstract

We propose a novel framework for learning stabilizable nonlinear dynamical systems for
continuous control tasks in robotics. The key contribution is a control-theoretic regularizer
for dynamics fitting rooted in the notion of stabilizability, a constraint which guarantees the
existence of robust tracking controllers for arbitrary open-loop trajectories generated with the
learned system. Leveraging tools from contraction theory and statistical learning in reproducing
kernel Hilbert spaces, we formulate stabilizable dynamics learning as a functional optimization
with a convex objective and bi-convex functional constraints. Under a mild structural assump-
tion and relaxation of the functional constraints to sampling-based constraints, we derive the
optimal solution with a modified representer theorem. Finally, we utilize random matrix fea-
ture approximations to reduce the dimensionality of the search parameters and formulate an
iterative convex optimization algorithm that jointly fits the dynamics functions and searches
for a certificate of stabilizability. We validate the proposed algorithm in simulation for a pla-
nar quadrotor, and on a quadrotor hardware testbed emulating planar dynamics. We verify,
both in simulation and on hardware, significantly improved trajectory generation and tracking
performance with the control-theoretic regularized model over models learned using traditional
regression techniques, especially when learning from small supervised datasets. The results sup-
port the conjecture that the use of stabilizability constraints as a form of regularization can help
prune the hypothesis space in a manner that is tailored to the downstream task of trajectory
generation and feedback control. This produces models that are not only dramatically better
conditioned, but also data efficient.

1 Introduction

The problem of efficiently and accurately estimating an unknown dynamical system,

ẋ(t) = F (x(t), u(t)), (1)

∗ssingh19@alumni.stanford.edu, {spenrich,pavone}@stanford.edu
†sindhwani@google.com
‡jjs@mit.edu

1



from a small set of sampled trajectories, where x ∈ Rn is the state and u ∈ Rm is the control
input, is a central task in model-based Reinforcement Learning (RL). In this setting, a robotic
agent strives to pair an estimated dynamics model with a feedback policy in order to act optimally
in a dynamic and uncertain environment. The model of the dynamical system can be continuously
updated as the robot experiences the consequences of its actions, and the improved model can be
leveraged for different tasks, affording a natural form of transfer learning. When it works, model-
based RL typically offers major improvements in sample efficiency in comparison to state-of-the-art
model-free methods such as policy gradients (Chua et al., 2018; Nagabandi et al., 2017) that do not
explicitly estimate the underlying system. Yet, all too often, when standard supervised learning
with powerful function approximators such as deep neural networks and kernel methods are applied
to model complex dynamics, the resulting controllers do not perform on par with model-free RL
methods in the limit of increasing sample size, due to compounding errors across long time horizons.
The main goal of this paper is to develop a new control-theoretic regularizer for dynamics fitting
rooted in the notion of stabilizability, which guarantees the existence of a robust tracking controller
for arbitrary open-loop trajectories generated with the learned system.

Problem Statement: The motion planning task we wish to solve is to compute a (possibly non-
stationary) policy mapping state and time to control that drives any given initial state to a desired
compact goal region, while satisfying state and control input constraints, and minimizing some task
specific performance cost (e.g., control effort and time to completion). However, in this work, we
assume that the dynamics function F (x, u) is unknown to us and we are instead provided with
a dataset of tuples {(xi, ui, ẋi)}Ni=1 taken from a collection of observed trajectories (e.g., expert
demonstrations) on the robot. Accordingly, the objective of this work is to learn a dynamics model
F̂ (·, ·) for the robot that is subsequently amenable for use within standard planning algorithms.

Approach Overview: Our parameterization of the policy takes the form u∗(t) + k(x∗(t), x(t)),
where (x∗, u∗) is a nominal open-loop state-input control trajectory tuple, and k(·, ·) is a feedback
tracking controller. The performance of such a policy however, is strongly reliant upon the quality
of the computed state-input trajectory and the tracking controller.

Formally, a reference state-input trajectory tuple (x∗(t), u∗(t)), t ∈ [0, T ] for system (1) is
termed exponentially stabilizable at rate λ > 0 if there exists a feedback controller k : Rn×Rn → Rm
such that the solution x(t) of the system:

ẋ(t) = F (x(t), u∗(t) + k(x∗(t), x(t))),

converges exponentially to x∗(t) at rate λ. That is,

‖x(t)− x∗(t)‖2 ≤ C‖x(0)− x∗(0)‖2 e−λt (2)

for some constant C > 0. The system (1) is termed exponentially stabilizable at rate λ in an open,
connected, bounded region X ⊂ Rn if all state trajectories x∗(t) satisfying x∗(t) ∈ X , ∀t ∈ [0, T ]
are exponentially stabilizable at rate λ.

In this work, we illustrate that näıve regression techniques used to estimate the dynamics model
from a small set of sample trajectories can yield model estimates that are severely ill-conditioned for
trajectory generation and feedback control. Instead, this work advocates for the use of a constrained

2



regression approach in which one attempts to solve the following problem:

min
F̂∈H

N∑
i=1

∥∥∥F̂ (xi, ui)− ẋi
∥∥∥2

2
+ µ‖F̂‖2H (3)

s.t. F̂ is stabilizable, (4)

where H is an appropriate normed function space and µ > 0 is a regularization parameter. Note
that we use (̂·) to differentiate the learned dynamics from the true dynamics. We demonstrate
that for systems that are indeed stabilizable, enforcing such a constraint drastically prunes the
hypothesis space, and therefore plays the role of a “control-theoretic” regularizer that is potentially
more powerful and ultimately more pertinent for the downstream control task of generating and
tracking new trajectories.

Statement of Contributions: Stabilizability of trajectories is not only a complex task in non-
linear control, but also a difficult notion to capture (in an algebraic sense) within a unified control
theory. In this work, we leverage recent advances in contraction theory for control design through
the use of Control Contraction Metrics (CCMs) (Manchester and Slotine, 2017; Singh et al., 2017)
that turn stabilizability constraints into convex state-dependent Linear Matrix Inequalities (LMIs).
Contraction theory (Lohmiller and Slotine, 1998) is a method of analyzing nonlinear systems in a
differential framework, i.e., via the associated variational system (Crouch and van der Schaft, 1987,
Chp 3), and is focused on the study of convergence between pairs of state trajectories towards each
other. Thus, at its core, contraction explores a stronger notion of stability – that of incremental
stability between solution trajectories, instead of the stability of an equilibrium point or invariant
set. Importantly, we harness recent results in (Manchester et al., 2015; Manchester and Slotine,
2017; Singh et al., 2017) that illustrate how to use contraction theory to obtain a certificate for
trajectory stabilizability and an accompanying tracking controller with exponential stability prop-
erties. For self-containment, we provide a brief summary of these results in Section 3, which in
turn will form the foundation of this work.

Our paper makes the following primary contributions.

• We formulate the learning stabilizable dynamics problem through the lens of CCMs (Sec-
tion 4). The resulting optimization problem is not only infinite-dimensional, as it is formu-
lated over function spaces, but also infinitely-constrained due to the state-dependent LMI
representing the stabilizability constraint.

• Under an arguably weak assumption on the structural form of the true dynamics model and a
relaxation of the functional constraints to sampling-based constraints (Section 5), we derive a
representer theorem (Scholköpf and Smola, 2001) specifying the form of the optimal solutions
for the dynamics functions and the certificate of stabilizability by leveraging the powerful
framework of vector-valued Reproducing Kernel Hilbert Spaces (RKHS) (Section 6). We
motivate the sampling-based relaxation of the functional constraints from a standpoint of
viewing the stabilizability condition as a novel control-theoretic regularizer for dynamics
learning.

• With theory from randomized matrix feature approximations, we derive a tractable algorithm
leveraging alternating convex optimization problems and adaptive sampling to iteratively
solve a finite-dimensional optimization problem (Section 7).

3



• We perform an extensive set of numerical simulations on a 6-state, 2-input planar quadro-
tor model and provide a comprehensive study of various aspects of the iterative algorithm.
Specifically, we demonstrate that näıve regression-based dynamics learning can yield esti-
mated models that generate completely unstabilizable trajectories. In contrast, the control-
theoretic regularized model generates vastly superior quality trackable trajectories, especially
when learning from small supervised datasets (Sections 2.1 and 7.2).

• We validate our algorithm on a quadrotor testbed (Section 8) with partially closed control
loops to emulate a planar quadrotor, where we verify that the stabilizability regularization
effect in low-data regimes observed in simulations does indeed generalize to real-world noisy
data. In particular, with just 150 noisy tuples of (x, u, ẋ), we are able to stably track a chal-
lenging test trajectory, which is generated with the learned model and substantially different
from any of the training data. In contrast, a model learned using traditional regression tech-
niques leads to consistently unstable behavior and eventual failure as the quadrotor repeatedly
flips out of control and crashes (see Figure 1).

Figure 1: Time-lapse of a quadrotor trying to execute a figure-eight maneuver (blue curve) using a reference trajectory
and a Linear-Quadratic Regulator (LQR) feedback tracking controller generated using the learned dynamical system.
Left : Model learned using traditional ridge-regression; Right : Model learned using control-theoretic regularization
proposed within this work. The models were trained with the same, extremely limited (150 points) set of (x, u, ẋ)
supervisory tuples. The quadrotor consistently failed and crashed into the floor with the trajectory and controller
generated by the model learned with ridge-regression; the red triangles mark the points along the reference and actual
trajectories at moment of crash – a separation of 1.6 m. In contrast, despite imperfect tracking (not unexpected given
the extremely limited amount of supervision given to the learning algorithm), which leads to a slight graze along the
floor at one point during the maneuver, the quadrotor manages to maintain bounded tracking error while using the
model learned with control-theoretic regularization.

A preliminary version of this paper was presented at WAFR 2018 (Singh et al., 2018). In
this revised and extended version, we include the following additional contributions: (i) rigorous
derivation of the stabilizability-regularized finite-dimensional optimization problem using RKHS
theory and random matrix features; (ii) extensive additional numerical studies into the convergence
behavior of the iterative algorithm and comparison with traditional ridge-regression techniques; and
(iii) validation of the algorithm on a quadrotor testbed with partially closed control loops to emulate
a planar quadrotor.

4



Related Work: Model-based RL has enjoyed considerable success in various application domains
within robotics such as underwater vehicles (Cui et al., 2017), soft robotic manipulators (Thuruthel
et al., 2019), and control of agents with non-stationary dynamics (Ohnishi et al., 2019). While the
literature on model-based RL is substantial (see (Polydoros and Nalpantidis, 2017) for a recent
review), we focus our attention on five broad categories relevant to the problem we address in
this work. Namely, these are: (i) direct regression for learning the full dynamics, where one
ignores any control-theoretic notions tied to the learning task and treats dynamics estimation as a
standard regression problem; (ii) residual learning, where one only attempts to learn corrections to
a nominal prediction model that may have been derived, for example, from physics-based reasoning;
(iii) uncertainty-aware model-based RL, where one tries to additionally represent the uncertainty
in the learned model using probabilistic representations that are subsequently leveraged within the
planning phase using robust or stochastic control techniques; (iv) hybrid model-based/model-free
methods; and (v) imitation learning, where one learns dynamical representations of stable closed-
loop behavior for a set of outputs (e.g., the end-effector on a robotic arm), and assumes knowledge
of the robot controlled dynamics to realize the learned closed-loop motion, for instance, using
dynamics inversion.

The simplest approach to learning dynamics is to ignore stabilizability and treat the prob-
lem as a standard one-step time series regression task (Punjani and Abbeel, 2015; Bansal et al.,
2016; Nagabandi et al., 2017; Polydoros and Nalpantidis, 2017). However, coarse dynamics models
trained on limited training data typically generate trajectories that rapidly diverge from expected
paths, inducing controllers that are ineffective when applied to the true system. This divergence
can be reduced by expanding the training data with corrections to boost multi-step prediction
accuracy (Venkatraman et al., 2015, 2016). Despite being effective, these methods are still heuris-
tic in the sense that the existence of a stabilizing feedback controller is not explicitly guaranteed.
Alternatively, one can leverage strong physics-based priors and use learning to only regress the
unmodeled dynamics. For instance, (Mohajerin et al., 2019; Shi et al., 2019; Punjani and Abbeel,
2015) aim to capture the unmodeled aerodynamic disturbance terms as corrections to a prior rigid
body dynamics model. (Punjani and Abbeel, 2015) accomplish this for helicopter dynamics us-
ing a deep neural network, but then do not use the learned model for control. (Shi et al., 2019)
attempt to capture the unmodeled ground-effect forces on quadrotors to build better controllers
for near-ground tracking and precision landing. (Mohajerin et al., 2019) leverage a residual RNN
in combination with a rigid-body model to generate time-series predictions for linear and angular
velocities of a quadrotor as a function of current state and candidate future motor inputs, but do
not use the model for closed-loop control. Finally, (Zhou et al., 2017) adopt a different perspective
to learning “corrections” in that they attempt to learn the inverse dynamics (output to reference)
for a system and pre-cascade the resulting predictions to correct an existing controller’s reference
signal in order to improve trajectory tracking performance. The approach relies on the existence
of a stabilizing controller and the stability of the system’s zero dynamics, thereby decoupling the
effects of learning from stability. In similar spirit, (Taylor et al., 2019) leverage input-output feed-
back linearization to derive a Control Lyapunov Function (CLF) for a nominal dynamics model,
assume that this function is a CLF for the actual dynamics as well, and regress only the correction
terms in the derivative of this CLF. While leveraging physics-based priors can certainly be powerful,
especially when the residual errors to be learned are small enough such that the system is feedback
stabilizable with a controller derived from the physics model, in this work we are interested in
the far more challenging scenario when such priors are unavailable and the full dynamics model

5



must be learned from scratch. While exemplified using quadrotor models that can certainly be
accurately stabilized even in the absence of learning, the insights provided in this work shed light
on fundamental topics in the context of control-theoretic learning, which hopefully may influence
dynamics-learning methods in more complex settings where priors are unavailable or too simple to
be useful for adequate control.

An alternative strategy to cope with error in the learned dynamics model is to use uncertainty-
aware model-based RL where control policies are optimized with respect to stochastic rollouts from
probabilistic dynamics models (Kocijan et al., 2004; Kamthe and Deisenroth, 2018; Deisenroth and
Rasmussen, 2011; Chua et al., 2018). For instance, PILCO (Deisenroth and Rasmussen, 2011)
leverages a Gaussian Process (GP) state transition model and moment matching to analytically
estimate the expected cost of a rollout with respect to the induced distribution. (Kamthe and
Deisenroth, 2018) extend this formulation using nonlinear Model Predictive Control (MPC) to
incorporate chance constraints. (Chua et al., 2018) leverage an ensemble of probabilistic models to
capture both epistemic (i.e., model) and aleatoric (i.e., intrinsic) uncertainty, and compute their
control policy in receding horizon fashion through finite sample approximation of the random cost.
Probabilistic models such as GPs may also be used to capture the residual error between a nominal
physics-based model and the true dynamics. In (Ostafew et al., 2016), a GP is incrementally learned
over multiple trials to capture unmodeled disturbances. The 3σ prediction range is subsequently
leveraged to formulate chance constraints as a robust nonlinear MPC problem. The goal of (Fisac
et al., 2017) and (Berkenkamp et al., 2017) is motivated from a safety perspective, where one wishes
to actively learn a control policy while remaining “safe” in the presence of unmodeled dynamics,
represented as GPs. The authors in (Fisac et al., 2017) leverage Hamilton-Jacobi reachability
analysis to give high-probability invariance guarantees for a region of the state-space within which
the learning controller is free to explore. On the other hand, (Berkenkamp et al., 2017) utilize
Lyapunov analysis and smoothness arguments to incrementally grow the Lyapunov function’s region
of attraction while simultaneously updating the GP. For the special case where the underlying
dynamics are linear-time-invariant, (Dean et al., 2019) derive high-probability convergence rates
for the estimated model and leverage system-level robust control techniques (Wang et al., 2019) for
guaranteeing state and control constraint satisfaction.

While utilizing probabilistic prediction models along with a control strategy that incorporates
this uncertainty, such as robust or approximate stochastic MPC, can certainly help guard against
imperfect dynamics models, large uncertainty in the dynamics can lead to overly conservative
strategies. This is true especially when the learned model is not merely a correction or residual
term, or if the probabilistic model is computationally intractable to use within planning (e.g.,
GPs without additional sparsifying simplifications), thereby forcing conservative approximations.
Finally, with the exception of the “safe” RL methods mentioned above, the learning algorithms
themselves do not incorporate knowledge of the downstream application of the function being
regressed, in that learning is viewed purely from a statistical point-of-view, rather than within a
control-theoretic context.

More recently, hybrid combinations of model-based and model-free techniques have gained atten-
tion within the learning community. The authors in (Bansal et al., 2017) use Bayesian optimization
to find an optimal linear dynamics model whose induced MPC policy minimizes the task-specific
cost. In similar spirit, (Amos et al., 2018) differentiate through the fixed-point solutions of a para-
metric MPC problem to find optimal MPC cost and dynamics functions in order to minimize the
actual task-specific cost. (Nagabandi et al., 2017) use behavioral cloning with respect to an MPC

6



policy generated from a learned dynamics model to initialize model-free policy fine-tuning. The
works in (Levine et al., 2016; Finn et al., 2016; Chebotar et al., 2017) leverage subroutines where
local time-varying dynamics are fitted around a set of policy rollouts, and then used to perform
trajectory optimization via an LQR backward pass. The induced local linear-time-varying policy
from this rollout is then used as a supervisory signal for global policy optimization. While these
lines of work try to frame dynamics fitting within the downstream context of the task, thereby im-
buing the resulting learning algorithm with a more closed-loop flavor, the learned dynamics may be
substantially different from the actual dynamics of the robot since, with the exception of the local
time-varying dynamics fitting, the true goal is to optimize the task-specific cost. This can yield
distorted dynamic models whose induced policies are more cost-optimal than policies extracted
from the true dynamics. Thus, while the work presented herein espouses a closed-loop learning
ideology, it does so from the control-theoretic perspective of trajectory stabilizability, i.e., the true
objective is dynamics fitting which will subsequently be used to derive optimal trajectories and
tracking controllers.

Finally, we address lines of work closest in spirit to this work. Learning dynamical systems
satisfying some desirable stability properties (such as asymptotic stability about an equilibrium
point, e.g., for point-to-point motion) has been studied in the autonomous case, ẋ(t) = f(x(t)),
in the context of imitation learning. In this line of work, one assumes perfect knowledge and
invertibility of the robot’s controlled dynamics to solve for the input that realizes this desirable
closed-loop motion (Lemme et al., 2014; Khansari-Zadeh and Khatib, 2017; Ravichandar et al.,
2017; Khansari-Zadeh and Billard, 2011; Medina and Billard, 2017). In particular, for a vector-
valued RKHS formulation in the autonomous case with constant (identity) contraction metric,
see (Sindhwani et al., 2018). Crucially, in our work, we do not require knowledge or invertibility
of the robot’s controlled dynamics. We seek to learn the full controlled dynamics of the robot,
under the constraint that the resulting learned dynamics generate dynamically feasible and most
importantly, stabilizable trajectories. Thus, this work generalizes existing literature by additionally
incorporating the controllability limitations of the robot within the learning problem.

The tools we develop may also be used to extend standard adaptive robot control design, such
as (Slotine and Li, 1987) – a technique which achieves stable concurrent learning and control using
a combination of physical basis functions and general mathematical expansions, e.g. radial basis
function approximations (Sanner and Slotine, 1992). Notably, our work allows us to handle complex
underactuated systems – a consequence of the significantly more powerful function approximation
framework developed herein, as well as of the use of a differential (rather than classical) Lyapunov-
like setting, as we shall detail.

Notation: Let Sj be the set of symmetric matrices in Rj×j and denote S≥0
j , respectively S>0

j , to be

the set of symmetric positive semi-definite, respectively, positive definite matrices in Rj×j . Given a
matrix X, let X̂ := X +XT . We denote the components of a vector y ∈ Rn as yj , j = 1, . . . , n, its
Euclidean norm as ‖y‖, and its weighted norm as ‖y‖A where ‖y‖A =

√
yTAy for some A ∈ S>0

n .
Let ∂yG(x) denote a matrix with (i, j)th entry given by the Lie derivative of the function Gij(x)
along the vector y. Finally, let λ̄(A) and λ(A) denote the maximum and minimum eigenvalues of
a square matrix A.

7



2 Problem Formulation and Solution Methodology

In this section we formally outline the structure of the problem we wish to solve and describe a
general solution methodology rooted in model-based RL. To motivate the contributions of this work,
we additionally present an attempt at a solution that uses traditional model-fitting techniques, and
demonstrate how it fails to capture the nuances of the problem and ultimately yields sub-par results.

Consider a robotic system with state x ∈ X , where X is an open, connected, bounded subset
of Rn, and control u ∈ U , where U is a closed, bounded subset of Rm, governed by the following
continuous-time dynamical system:

ẋ(t) = F (x(t), u(t)),

where F is Lipschitz continuous in the state for fixed control, so that for any measurable control
function u(·), there exists a unique state trajectory. The motion planning task we wish to solve is
to find a (possibly non-stationary) policy π : X × R → U that (i) drives the state x to a compact
region Xgoal ⊆ X , (ii) satisfies the state and input constraints, and (iii) minimizes a quadratic cost:

J(π) :=

∫ Tgoal

0
1 + ‖π(x(t), t)‖2R dt,

where R ∈ S>0
m and Tgoal is the first time x(t) enters Xgoal. While there exist several methods in

the literature on how to solve this problem given knowledge of the dynamical system, in this work,
we assume that we do not know the governing model F (x, u). The problem we wish to address is
how to solve the above motion planning task, given a dataset of tuples {(xi, ui, ẋi)}Ni=1 extracted
from observed trajectories on the robot.

The solution approach presented in this work adopts the model-based RL paradigm, whereby
one first estimates a model of the dynamical system F̂ (x, u) using some form of regression, and then
uses the learned model to solve the motion planning task with traditional planning algorithms. In
this work, our strategy to solve the planning task is to parameterize general state-feedback policies
as a sum of a nominal (open-loop) input u∗ and a feedback term designed to track the nominal
state trajectory x∗ (induced by u∗):

π(x(t), t) = u∗(t) + k(x∗(t), x(t)). (5)

This formulation represents a compromise between the general class of state-feedback control laws
(a computationally intractable space over which to optimize) and a purely open-loop formulation
(i.e., no tracking). Note that we do not present a new methodology for solving the planning task.
Specifically, it is assumed that there exists an algorithm for computing (i) the open-loop state and
control trajectories (x∗(t), u∗(t)) that minimize the open-loop cost:

J(u(·)) =

∫ Tgoal

0
1 + ‖u(t)‖2R dt,

and (ii) the feedback tracking controller k(·, ·), given a dynamical model. The focus of this paper
is on how to design the regression algorithm for computing the model estimate F̂ .

8



2.1 Motivating Example

We ground the formalism within the following example that will feature throughout this work.

Example 1 (PVTOL). Consider the six-state Planar Vertical Take-Off and Landing (PVTOL)
system depicted in Figure 2. The system is defined by the state (px, pz, φ, vx, vz, φ̇), where (px, pz)
is the position in the 2D plane, (vx, vz) is the body-reference velocity, and (φ, φ̇) are the roll and
angular rate respectively, and u ∈ R2

>0 are the controlled motor thrusts. The true dynamics are
given by:

ẋ(t) =



vx cosφ− vz sinφ
vx sinφ+ vz cosφ

φ̇

vzφ̇− g sinφ

−vxφ̇− g cosφ
0

+



0 0
0 0
0 0
0 0

(1/m) (1/m)
l/J (−l/J)

u, (6)

where g is the acceleration due to gravity, m is the mass, l is the moment-arm of the thrusters, and
J is the moment of inertia about the roll axis.

Figure 2: Definition of planar quadrotor state variables: l denotes the thrust moment arm (symmetric), and u1 and
u2 denote the right and left thrust forces respectively.

The planar quadrotor is a complex non-minimum phase dynamical system that has been heavily
featured within the acrobatic robotics literature and therefore serves as a suitable case-study.

2.1.1 Solution Parameterization

The dynamics assume the general control-affine form:

ẋ(t) = f(x(t)) +B(x(t))u(t), (7)

where f : X → Rn, and B : X → Rn×m is the input matrix, depicted in column-stacked form as
(b1, . . . , bm). Let us define the model estimate also in control-affine form as ẋ = f̂(x) + B̂(x)u,
where B̂ = (b̂1, . . . , b̂m). Consider, as a first solution attempt, the following linear parameterization
for the vector-valued functions f̂ and b̂j :

f̂(x) = Φf (x)Tα, (8a)

b̂j(x) = Φb(x)Tβj j ∈ {1, . . . ,m}, (8b)

where α ∈ Rdf , βj ∈ Rdb are constant vectors to be optimized over, and Φf : X → Rdf×n,
Φb : X → Rdb×n are a priori chosen feature mappings. To replicate the sparsity structure of the
PVTOL input matrix, the feature matrix Φb has all zeros in its first n−m columns.

9



The justification for a linear model and the construction of the feature mappings will be elab-
orated upon later. At this moment, we wish to study the quality of the learned models obtained
from solving the following convex optimization problem:

min
α,{βj}

N∑
i=1

‖f̂(xi) + B̂(xi)ui − ẋi‖2 + µf‖α‖2 + µb

m∑
j=1

‖βj‖2, (9)

where µf , µb > 0 are given regularization constants. Note that the above optimization corresponds
to the ubiquitous ridge-regression problem and is therefore a viable solution approach.

To evaluate the feasibility of this solution approach, we extracted a collection of training tuples
{(xi, ui, ẋi)}Ni=1 from simulations of the PVTOL system without any noise (for further details,
please see Section 7.2). We learned three models: (i) N-R: un-regularized model1 (µf = 0, µb =
10−6), (ii) R-R: standard ridge-regularized model with µf = 10−4, µb = 10−6, and (iii) CCM-R:
control-theoretic regularized model, corresponding to the algorithm proposed within this work and
elaborated upon in the remaining paper.

We learned four versions of the model corresponding to varying training dataset sizes with
N ∈ {100, 250, 500, 1000}. The dimensions of α and βj were both 576 (corresponding to 96 pa-
rameters per state dimension). The feature mappings themselves are described in Section 7.2 and
Appendix A. The regularization constants were held fixed for all N .

2.1.2 Evaluation

The evaluation corresponded to the motion planning task of generating and tracking trajectories
using the learned models. We gridded the (px, pz) plane to create a set of 120 initial conditions
between 4 m and 12 m away from (0, 0), and randomly sampled the other states for the rest of the
initial conditions. These conditions were held fixed for all models and for all training dataset sizes
to evaluate model improvement.

For each model at each value of N , the evaluation task was to (i) solve a trajectory optimization
problem to compute a dynamically feasible trajectory for the learned model to go from initial state
x0 to the goal state – a stable hover at (0, 0) at near-zero velocity; and (ii) track this trajectory
with a feedback controller computed using Time-Varying LQR (TV-LQR). All simulations without
any feedback controller (i.e., open-loop control rollouts) led to the PVTOL crashing. This is under-
standable since the dynamics fitting objective does not optimize for multi-step error. The trajectory
optimization step was solved as a fixed-endpoint, fixed-final time optimal control problem using
the Chebyshev pseudospectral method (Fahroo and Ross, 2002) with the objective of minimizing∫ T

0 ‖u(t)‖2R dt. The final time T for a given initial condition was held fixed between all models.
Note that 120 trajectory optimization problems were solved for each model and each value of N .

Figure 3 shows a boxplot comparison of the trajectory-wise RMS full state errors (‖x(t)−x∗(t)‖
where x∗(t) is the reference trajectory obtained from the optimizer and x(t) is the actual realized
trajectory) for each model and all training dataset sizes. As N increases, the spread of the RMS
errors decreases for both R-R and CCM-R models as expected. However, we see that the N-R
model generates several unstable trajectories for N ∈ {100, 500, 1000}, indicating the need for a
form of regularization.

1A small penalty on µb was necessary since the input feature matrix Φb was chosen to be constant (and degenerate)
to reflect the fact that the input matrix for the PVTOL system is constant.

10



Figure 3: Box-whisker plot comparison of trajectory-wise RMS state-tracking errors over all 120 trajectories for each model and all training dataset sizes.
Top row, left-to-right: N = 100, 250, 500, 1000; Bottom row, left-to-right: N = 100, 500, 1000 (zoomed in). The box edges correspond to the 25th, median,
and 75th percentiles; the whiskers extend beyond the box for an additional 1.5 times the interquartile range; outliers, classified as trajectories with RMS
errors past this range, are marked with red crosses. Notice the presence of unstable trajectories for N-R at all values of N and for R-R at N = 100, 250.
The CCM-R model dominates the other two at all values of N , particularly for N ∈ {100, 250}.

11



For N = 100 (which is at the extreme lower limit of the necessary number of samples since there
are 96 features for each dimension of the dynamics function), both N-R and R-R models generate
a large number of unstable trajectories. In contrast, all trajectories generated with the CCM-R
model were successfully tracked with bounded error. The CCM-R model consistently achieves
a lower RMS error distribution than both the N-R and R-R models for all training dataset sizes.
Most notable, however, is its performance when the number of supervision training samples is small
(i.e., N ∈ {100, 250}) and there is considerable risk of overfitting. It appears the stabilizability
constraints leveraged to compute the CCM-R model have a notable regularizing effect on the
resulting model trajectories (recall that the initial conditions of the trajectories are held fixed
between the models). In Figure 4, we highlight two trajectories that start from the same initial
conditions – one generated and tracked using the R-R model, the other using the CCM-R model, for
N = 250. Overlaid on the plot are snapshots of the vehicle outline itself, illustrating the aggressive
flight-regime of the trajectories (the initial bank angle is 40o). While tracking the R-R model
generated trajectory eventually ends in complete loss of control, the system successfully tracks the
CCM-R model generated trajectory to the stable hover at (0, 0).

Figure 4: Comparison of reference and tracked trajectories in the (px, pz) plane for R-R and CCM-R models starting
at the same initial conditions with N = 250. Red (dashed): nominal, Blue (solid): actual, Green dot: start, Black
dot: nominal endpoint, blue dot: actual endpoint; Top: CCM-R, Bottom: R-R. The vehicle successfully tracks the
CCM-R model generated trajectory to the stable hover at (0, 0) while losing control when attempting to track the
R-R model generated trajectory.

12



2.1.3 Effect of Regularization

At this point, one might wonder if the choice of the regularization parameter µf may be sub-optimal
for the R-R model. Traditionally, such parameters are tuned using regression error on a validation
dataset. In Figure 5 we plot the mean regression error ‖f̂+ B̂u− ẋ‖ over an independently sampled
validation dataset of 2000 demonstration tuples, as a function of the regularization parameter µf ,
for all R-R models.

Figure 5: Mean regression error over an independent validation dataset as a function of µf for the RR model learned
using (9), with varying training set size N . The best out of sample performance is achieved with µf = 0.0. The
constant µb is fixed at 10−6.

The plot illustrates that the best out-of-sample performance is achieved with µf = 0.0. How-
ever, this corresponds to the N-R model which, as we learned in the previous section, generated
several unstable trajectories for all training dataset sizes. This is not a surprising result; the feature
mapping used as the basis for the dynamics model corresponds to the randomized matrix approxi-
mation of a reproducing kernel (see Section 6.4). Recent results, as in (Liang and Rakhlin, 2018)
and references within, corroborate such a pattern and even advocate for “ridgeless” regression.

Given that the CCM-R model uses the same feature mapping as the R-R and N-R models (i.e.,
the model capacity of all three models is the same), and is given the same set of demonstration
tuples, it appears that traditional model-fitting techniques such as ridge-regression and associated
hyper-parameter tuning rules are ill-suited to learn representations of dynamics that are appropriate
for planning and control. This motivates the need for constrained dynamics learning, where the
notion of model stabilizability is encoded as a constraint within the learning algorithm (as opposed to
the unconstrained optimization in (9)). In the next section, we introduce conditions for nonlinear
trajectory stabilizability which can be encoded as algebraic constraints within a model learning
algorithm to prune the hypothesis space in a manner that is tailored to the downstream task of
trajectory generation and feedback control.

13



3 Review of Contraction Theory

The core principle behind contraction theory (Lohmiller and Slotine, 1998) is to study the evolution
of distance between any two arbitrarily close neighboring trajectories and draw conclusions upon
the distance between any finitely apart pair of trajectories. Given an autonomous system of the
form: ẋ(t) = f(x(t)), consider two neighboring trajectories separated by an infinitesimal (virtual)
displacement δx; formally, δx is a vector in the tangent space TxX at x. The dynamics of this
virtual displacement are given by:

δ̇x =
∂f

∂x
δx,

where ∂f/∂x is the Jacobian of f . The dynamics of the infinitesimal squared distance δTx δx between
these two trajectories is then given by:

d

dt

(
δTx δx

)
= 2δTx

∂f

∂x
δx.

Then, if the symmetric part of the Jacobian matrix ∂f/∂x is uniformly negative definite, i.e.,

sup
x
λ̄

(
1

2

∂f(x)

∂x

∧)
≤ −λ < 0,

where (·)
∧

:= (·) + (·)T , λ > 0, one has that the squared infinitesimal length δTx δx is exponentially
convergent to zero at rate 2λ. By path integration of δx between any pair of trajectories, one has
that the distance between any two trajectories shrinks exponentially to zero. The vector field f is
thereby referred to be contracting at rate λ, and λ is referred to as the contraction rate.

Contraction metrics generalize this observation by considering as infinitesimal squared length
distance, a symmetric positive definite function V (x, δx) = δTxM(x)δx, where M : X → S>0

n is a
mapping from X to the set of uniformly positive definite n×n symmetric matrices. Formally, M(x)
may be interpreted as a Riemannian metric tensor, endowing the space X with the Riemannian
squared length element V (x, δx). A fundamental result in contraction theory (Lohmiller and Slotine,
1998) is that any contracting system admits a contraction metric M(x) such that the associated
function V (x, δx) satisfies:

V̇ (x, δx) ≤ −2λV (x, δx), ∀(x, δx) ∈ T X ,

for some positive contraction rate λ. Thus, the function V (x, δx) may be interpreted as a differential
Lyapunov function.

3.1 Control Contraction Metrics

Control contraction metrics (CCMs) generalize contraction analysis to the controlled dynamical
setting, in the sense that the analysis searches jointly for a controller design and the metric that
describes the contraction properties of the resulting closed-loop system. Consider a control affine
dynamical system of the form in (7). To define a CCM, analogously to the previous section, we
first analyze the variational dynamics, i.e., the dynamics of an infinitesimal displacement δx:

δ̇x =

:=A(x,u)︷ ︸︸ ︷(
∂f(x)

∂x
+

m∑
j=1

uj
∂bj(x)

∂x

)
δx +B(x)δu, (10)

14



where δu is an infinitesimal (virtual) control vector at u (i.e., δu is a vector in the control input
tangent space, i.e., Rm). A uniformly positive definite matrix-valued function M(x) is a CCM for
the system {f,B} if there exists a function δu(x, δx, u) such that the function V (x, δx) = δTxM(x)δx
satisfies

V̇ (x, δx, u) = δTx

(
∂f+BuM(x) +M(x)A(x, u)
∧)

δx + 2δTxM(x)B(x)δu(x, δx, u)

≤ −2λV (x, δx) ∀(x, δx) ∈ T X , u ∈ U .
(11)

Given the existence of a CCM, one can then construct an exponentially stabilizing (in the sense
of (2)) feedback controller k(x∗, x) as described in Appendix B.

Some important observations are in order. First, the function V (x, δx) may be interpreted as
a differential CLF, in that there exists a stabilizing differential controller δu that stabilizes the
variational dynamics (10) in the sense of (11). Second, and more importantly, by stabilizing the
variational dynamics (essentially an infinite family of linear dynamics in (δx, δu)) pointwise, every-
where in the state-space, we obtain a stabilizing controller for the original nonlinear system. This
result, proven in (Manchester and Slotine, 2017; Singh et al., 2017), is derived from integrating the
stabilizing differential controller along curves connecting the desired and actual state trajectories.
Informally, the proof shows how the length of these curves can be made to shrink exponentially,
by virtue of the exponential stability of the differential controller at all points along the curves.
Crucially, this is an exact stabilization result, not one based on local linearization. Consequently,
one can show several useful properties, such as invariance to state-space transformations (Manch-
ester and Slotine, 2017) and robustness (Singh et al., 2017; Manchester and Slotine, 2018). Third,
the CCM approach only requires a weak form of controllability, and therefore is not restricted to
feedback linearizable (i.e., invertible) systems.

4 CCM Constrained Dynamics Learning

Leveraging the characterization of stabilizability via CCMs, we can now formalize our dynamics
learning problem as follows. Given a supervised dataset of demonstration tuples {(xi, ui, ẋi)}Ni=1,
we wish to learn the dynamics functions f(x) and B(x) in (7), subject to the constraint that there
exists a CCM M(x) for the learned dynamics. That is, the CCM M(x) plays the role of a certificate
of stabilizability for the learned dynamics.

As shown in (Manchester and Slotine, 2017), a necessary and sufficient characterization of a
CCM M(x) for the system {f̂, B̂} is given in terms of its dual W (x) := M(x)−1 by the following
two conditions:

B̂⊥(x)T

∂b̂jW (x)− ∂b̂j(x)

∂x
W (x)

∧ B̂⊥(x) = 0, j = 1, . . . ,m ∀x ∈ X , (12)

B̂⊥(x)T

−∂f̂W (x) +
∂f̂(x)

∂x
W (x)

∧

+ 2λW (x)

 B̂⊥(x)

︸ ︷︷ ︸
:=Fλ(x;f̂,W )

� 0, ∀x ∈ X , (13)

where B̂⊥ is the annihilator matrix for B̂, i.e., B̂(x)T B̂⊥(x) = 0 for all x. To see this, perform
the change of variables ηx := M(x)δx in (11) and examine the case where the coefficient of δu is

15



zero. In the definition above, we write Fλ(x; f̂,W ) since {f̂,W} will be optimization variables in
our formulation while λ is treated as a hyper-parameter. Thus, the learning task reduces to finding
the functions {f̂, B̂,W} that jointly satisfy the above constraints, while minimizing an appropriate
regularized regression loss function. Formally, problem (3) can be re-stated as:

min
f̂∈Hf ,b̂j∈HB ,j=1,...,m

W∈HW
w,w∈R>0

:=Jd(f̂,B̂)︷ ︸︸ ︷
N∑
i=1

∥∥∥f̂(xi) + B̂(xi)ui − ẋi
∥∥∥2

+ µf‖f̂‖2Hf + µb

m∑
j=1

‖b̂j‖2HB +

+ (w − w) + µw‖W‖2HW︸ ︷︷ ︸
:=Jm(W,w,w)

(14a)

s.t. eqs. (12), (13) ∀x ∈ X , (14b)

wIn �W (x) � wIn ∀x ∈ X , (14c)

where Hf and HB are appropriately chosen Rn-valued function classes on X for f̂ and {b̂j}mj=1

respectively, and HW is a suitable S>0
n -valued function space on X . The objective is composed

of a dynamics term Jd consisting of regression loss and regularization terms, and a metric term
Jm consisting of a condition number surrogate loss on the metric W (x) and a regularization term.
The metric cost term w − w is motivated by the observation that the state tracking error (i.e.,
‖x(t)−x∗(t)‖2) in the presence of bounded additive disturbances is proportional to the ratio w/w;
see (Singh et al., 2017).

Notice that the coupling constraints (12) and (13) are bi-linear in the decision variables f̂ and
W . Thus, at a high-level, a solution algorithm must consist of alternating between two convex sub-
problems, defined by the objective and decision variable pairs (Jd, {f̂, B̂}) and (Jm, {W,w,w}).
We refer to the first sub-problem as the dynamics sub-problem, and the second as the metric
sub-problem. These sub-problems are described in full in Section 7.

Remark 1. One may include λ as part of the overall optimization problem; indeed this is the
case in the robust planning setting in (Singh et al., 2017). However, doing so would require either
(i) adding −λ to the dynamics sub-problem cost function, or (ii) line-searching over λ within the
metric sub-problem. The first option detracts from the primary objective of the dynamics sub-
problem, which is to minimize regression error, while the second option induces needless complexity.
Thus, in this work, λ is held fixed as a tuning parameter.

5 CCM Regularized Dynamics Learning

When performing dynamics learning on a system that is a priori known to be exponentially sta-
bilizable with rate at least λ, the constrained problem formulation in (14) follows naturally given
the assured existence of a CCM. Albeit, the infinite-dimensional nature of the constraints is a
considerable technical challenge, falling under the class of semi-infinite optimization (Hettich and
Kortanek, 1993). Alternatively, for systems that are not globally exponentially stabilizable in X ,
one can imagine that such a constrained formulation may lead to adverse bias effects on the learned
dynamics model.

Thus, in this section we propose a relaxation of problem (14) motivated by the concept of
regularization. Specifically, constraints (12) and (13) capture this notion of stability of infinitesimal

16



deviations at all points in the space X . They stem from requiring that V̇ ≤ −2λV (x, δx) in (11)
when δTxM(x)B(x) = 0, i.e., when δu can have no effect on V̇ . This is nothing but the standard
control Lyapunov inequality, applied to the differential setting. Constraint (12) sets to zero, the
terms in (11) affine in u, while constraint (13) enforces this “natural” stability condition.

The simplifications we make are (i) relax constraints (13) and (14c) to hold pointwise over some
finite constraint set Xc ⊂ X , and (ii) assume a specific sparsity structure for the input matrix
estimate B̂(x). We discuss the pointwise relaxation here; the sparsity assumption on B̂(x) is
discussed in the following section.

First, from a purely mathematical standpoint, the pointwise relaxation of (13) and (14c) is
motivated by the observation that, as the CCM-based controller is exponentially stabilizing, we
only require the differential stability condition to hold locally (in a tube-like region) with respect to
the provided demonstrations. By continuity of eigenvalues for continuously parameterized entries
of a matrix, it is sufficient to enforce the matrix inequalities at a sampled set of points (Lax, 2007).

Second, while adopting a sampled version of the stability constraint implies that we can no longer
claim exact stabilizability for the learned model, enforcing the existence of such an “approximate”
CCM seems to have an impressive regularization effect on the learned dynamics that is more
meaningful than standard regularization techniques used in for instance, ridge or lasso regression.
Specifically, problem (14), and more generally, problem (3) can be viewed as the projection of the
best-fit dynamics onto the set of stabilizable systems. This results in dynamics models that jointly
balance regression performance and stabilizablity, ultimately yielding systems whose generated
trajectories are notably easier to track. This effect of regularization is apparent in the simulation
results presented in Section 2.1, and the hardware testbed results in Section 8.

Practically, the finite constraint set Xc, with cardinality Nc, includes all xi in the supervised
regression training set of {(xi, ui, ẋi)}Ni=1 tuples. However, as the LMI constraints are independent
of ui and ẋi, the set Xc is chosen as a strict superset of {xi}Ni=1 (i.e., Nc > N) by randomly sampling
additional points within X , drawing parallels with semi-supervised learning.

5.1 Sparsity of Input Matrix

While a pointwise relaxation for the matrix inequalities is reasonable, one cannot apply such a
relaxation to the exact equality condition in (12). Thus, the second simplification made is the
following assumption, reminiscent of control normal form equations.

Assumption 1. Assume B̂(x) to take the following sparse representation:

B̂(x) =

[
O(n−m)×m

b(x)

]
, (15)

where O is the zero matrix and b(x) is an invertible m×m matrix for all x ∈ X .

For the assumed structure of B̂(x), a valid B̂⊥ matrix is then given by:

B̂⊥ =

[
In−m

Om×(n−m)

]
, (16)

where I is the identity matrix. Therefore, constraint (12) simply becomes:

∂b̂jW⊥(x) = 0, j = 1, . . . ,m,

17



where W⊥ is the upper-left (n−m)× (n−m) block of W (x). Assembling these constraints for the
(p, q) entry of W⊥, i.e., w⊥pq , we obtain:[

∂w⊥pq(x)

∂x(n−m)+1
· · ·

∂w⊥pq(x)

∂xn

]
b(x) = 0.

Since the matrix b(x) in (15) is assumed to be invertible, the only solution to this equation is
∂w⊥pq/∂x

i = 0 for i ∈ {(n−m) + 1, . . . , n}, and all (p, q) ∈ {1, . . . , (n−m)}. That is, W⊥ cannot
be a function of the last m components of x – an elegant simplification of constraint (12).

Let us justify the structural assumption in (15). Physically, this assumption is not as mysterious
as it appears. Indeed, consider the standard dynamics form for mechanical systems:

H(q)q̈ + C(q, q̇)q̇ + g(q) = B(q)u,

where q ∈ Rnq is the configuration vector, H ∈ S>0
nq is the inertia matrix, C(q, q̇)q̇ contains the

centrifugal and Coriolis terms, g are the gravitational terms, B ∈ Rnq×m is the (full rank) input
matrix mapping, and u ∈ Rm is the input; for fully actuated systems, rank(B) = m = nq. For un-
deractuated systems, m < nq. By rearranging the configuration vector (Spong, 1998; Olfati-Saber,
2001; Reyhanoglu et al., 1999), one can partition q as (qu, qa) where qu ∈ Rnq−m represents the
unactuated degrees of freedom and qa ∈ Rm represents the actuated degrees of freedom. Applying
this partitioning to the dynamics equation above yields:[

Huu(q) Hua(q)
Hua(q) Haa(q)

] [
q̈u
q̈a

]
+

[
τu(q, q̇)
τa(q, q̇)

]
=

[
O(nq−m)×m

b(q)

]
u, (17)

where b ∈ Rm×m is an invertible square matrix. As observed in (Reyhanoglu et al., 1999), a
substantial class of underactuated systems can be represented in this manner. Of course, fully
actuated systems (i.e., m = nq) also take this form. Thus, by taking as state x = (q, p) ∈ Rn where
p = H(q)q̇ is momentum (so that n = 2nq), the dynamics can be written as:

ẋ =

[
q̇
ṗ

]
=

[
H−1(q)p

Ḣ(q)q̇ − τ(q, q̇)

]
+

[
O(n−m)×m

b(q)

]
u. (18)

Notice that the input matrix takes the desired normal form in (15). To address the apparent difficult
of working with the state representation of (q, p) (when usually only measurements of (q, q̇, q̈) are
typically available and the inertia matrix H(q) is unknown), one may leverage the following result
from (Manchester and Slotine, 2017):

Theorem 1 (CCM Invariance to Diffeomorphisms). Suppose there exists a valid CCM Mx(x) with
respect to the state x. Then, if z = ψ(x) is a diffeomorphism, then the CCM conditions also
hold with respect to state z with metric Mz(z) = Ψ(z)−TMx(x)Ψ(z)−1, where Ψ(z) = ∂ψ(x)/∂x is
evaluated at x = ψ−1(z).

Thus, for the class of underactuated systems that does not readily possess an input matrix of the
form (15), for instance when using a state-representation (q, q̇), one may instead rely on the state
representation (q, p) whose associated dynamics in (18) possesses the desired input matrix structure.
For such systems, one would solve problem (14) by formulating the regression loss using the state
representation (q, q̇) and dynamics representation in (17), and using the previous estimate of H
within the matrix inequality constraints, formulated with respect to the dynamics representation

18



in (18) and state (q, p). This allows us to borrow several existing results from adaptive control on
estimating mechanical system by leveraging the known linearity of H(q) in terms of unknown mass
property parameters multiplying known physical basis functions. We leave this extension however,
to future work, and from hereon assume the structural form given in (16) for the estimated input
matrix.

5.2 Finite-dimensional Optimization

We now present a tractable finite-dimensional optimization for solving problem (14) under the two
simplifying assumptions introduced in the previous sections. For ease of presentation, we outline
the final optimization formulation here and provide the derivation, which relies extensively on
vector-valued Reproducing Kernel Hilbert Spaces (RKHS), in the following section.

Parameterization: Model f̂, {b̂j}mj=1 and {wij}ni,j=1 as linear combinations of features. That is,

f̂(x) = Φf (x)Tα, (19)

b̂j(x) = Φb(x)Tβj j ∈ {1, . . . ,m}, (20)

wij(x) =

{
φ̂w(x)T θ̂ij if (i, j) ∈ {1, . . . , n−m},
φw(x)T θij else,

(21)

where α ∈ Rdf , βj ∈ Rdb , θ̂ij , θij ∈ Rdw are constant vectors to be optimized over, and Φf : X →
Rdf×n, Φb : X → Rdb×n, φ̂w : X → Rdw and φw : X → Rdw are a priori chosen feature mappings.
To enforce the sparsity structure in (15), the feature matrix Φb must have all zeros in its first n−m
columns. The features φ̂w are distinct from φw in that the former are only a function of the first
n −m components of x (as per Section 5.1). While one can use any function approximator (e.g.,
neural nets), we motivate this parameterization from a perspective of RKHS – see Section 6.

Optimization: Given positive regularization constants µf , µb, µw and positive tolerances ελ, δw, εw,
solve:

min
α,βj ,θ̂ij ,θij ,w,w

:=Ĵd︷ ︸︸ ︷
N∑
i=1

‖f̂(xi) + B̂(xi)ui − ẋi‖2 + µf‖α‖2 + µb

m∑
j=1

‖βj‖2

+ (w − w) + µw
∑
i,j

‖θ̃ij‖2︸ ︷︷ ︸
:=Ĵm

(22a)

s.t. Fλ+ελ(xi;α, θ̃ij) � 0 ∀xi ∈ Xc, (22b)

(w + εw)In �W (xi) � wIn ∀xi ∈ Xc, (22c)

θij = θji, θ̂ij = θ̂ji (22d)

w ≥ δw, (22e)

where θ̃ij is used as a placeholder for θij and θ̂ij to simplify notation, and we use Ĵd and Ĵm to
distinguish them from the functional equivalents Jd and Jm in problem (14). We wish to highlight
the following key points regarding problem (22). Constraints (22b) and (22c) are the pointwise

19



relaxations of (13) and (14c) respectively; (22d) enforces the symmetry of W (x), and (22e) imposes
some tolerance requirements to ensure a well conditioned solution. Additionally, the tolerances ελ
and εw are used to account for the pointwise relaxations of the matrix inequalities. A key challenge
is to efficiently solve this constrained optimization problem, given a potentially large number of
constraint points in Xc. In Section 7, we present an iterative algorithm and an adaptive constraint
sampling technique to solve problem (22).

6 Derivation of Problem (22)

To go from the general problem definition in (14) to the finite dimensional problem in (22), we
first must define appropriate function classes for f̂ , b̂j , and W . We will do this using the frame-
work of RKHS. We summarize the contents of this section here. First, starting from the infinite-
dimensional non-convex constrained optimization over function spaces, i.e., problem (14), we split
the problem into alternating between two infinite-dimensional convex sub-problems. Second, we de-
rive the representation of the optimal solution of each sub-problem in Sections 6.2 and 6.3, by lever-
aging the mild structural assumption on the input matrix and relaxation of the infinite-dimensional
constraints to sampling-based constraints. Third, in Section 6.4, we use the universal approxima-
tion property of random matrix feature maps to reduce the dimensionality of the representation of
the optimal solutions, at last yielding problem (22). We first provide a brief introduction to RKHS
theory.

6.1 Reproducing Kernel Hilbert Spaces

Scalar-valued RKHS: Kernel methods (Scholköpf and Smola, 2001) constitute a broad family of
non-parametric modeling techniques for solving a range of problems in machine learning. A scalar-
valued positive definite kernel function k : X × X 7→ R generates a RKHS Hk of functions, with
the nice property that if two functions are close in the distance derived from the norm (associated
with the Hilbert space), then their pointwise evaluations are close at all points. This continuity of
evaluation functionals has the far-reaching consequence that norm-regularized learning problems
over RKHSs admit finite dimensional solutions via representer theorems. The kernel k may be (non-
uniquely) associated with a higher-dimensional embedding of the input space via a feature map,
φ : Rn 7→ RD, such that k(x, z) = φ(x)Tφ(z), where D is infinite for universal kernels associated
with RKHSs that are dense in the space of square-integrable functions. Standard regularized linear
statistical models in the embedding space implicitly provide nonlinear inference with respect to
the original input representation. In a nutshell, kernel methods provide a rigorous algorithmic
framework for deriving nonlinear counterparts of a whole array of linear statistical techniques,
e.g., for classification, regression, dimensionality reduction, and unsupervised learning. For further
details, we point the reader to (Hearst et al., 1998).

Vector-valued RKHS: Dynamics estimation is a vector-valued learning problem. Such prob-
lems can be naturally formulated in terms of vector-valued generalizations of RKHS concepts. The
theory and formalism of vector-valued RKHS can be traced as far back as the work of Laurent
Schwartz (Schwartz, 1964), with applications ranging from solving partial differential equations to
machine learning. Informally, we say that H is an RKHS of Rn-valued maps if for any v ∈ Rn, the
linear functional that maps f ∈ H to vT f(x) is continuous for each x.

More formally, denote the standard inner product on Rn as 〈·, ·〉, and let Rn(X ) be the vector

20



space of all functions f : X → Rn and let L(Rn) be the space of all bounded linear operators on
Rn, i.e., n × n matrices. A function K : X × X → L(Rn) is an operator-valued positive definite
kernel if for all (x, z) ∈ X ×X : K(x, z)T = K(z, x), and for any pair of finite sets {xi}Ni=1 ∈ X and
{yi}Ni=1 ∈ Rn,

N∑
i,j=1

〈yi,K(xi, xj)yj〉 ≥ 0.

Given such a K, we define the unique Rn-valued RKHS HK ⊂ Rn(X ) with reproducing kernel K
as follows. For each x ∈ X and y ∈ Rn, define the function Kxy = K(·, x)y ∈ Rn(X ). That is,
Kxy(z) = K(z, x)y for all z ∈ X . Then, the Hilbert space HK is defined to be the completion of
the linear span of functions {Kxy | x ∈ X , y ∈ Rn} with inner product 〈·, ·〉HK between functions

f =
∑N

i=1Kxiyi, g =
∑N ′

j=1Kzjwj ∈ HK , defined as:

〈f, g〉HK =
N∑
i=1

N ′∑
j=1

〈yi,K(xi, zj)wj〉 ,

and function norm ‖f‖2HK given as 〈f, f〉HK . Analogous to the canonical reproducing property of
scalar-valued RKHS kernels, i.e.,

h(x) = 〈h, k(x, ·)〉Hk ∀h ∈ Hk, (23)

the matrix-valued kernel K satisfies the following reproducing property:

〈f(x), y〉 = 〈f,Kxy〉HK ∀(x, y) ∈ X × Rn,∀f ∈ HK , (24)

and is thereby referred to as the reproducing kernel for HK . As our learning problem involves
the Jacobian of f , we will also require a representation for the derivative of the kernel matrix.
Accordingly, suppose the kernel matrix K lies in C2(X × X ). For any j ∈ {1, . . . , n}, define the
matrix functions ∂

∂sj
K : X × X → L(Rn) and ∂

∂rj
K : X × X → L(Rn) as

∂

∂sj
K(z, x) :=

∂

∂sj
K(r, s)

∣∣∣∣
r=z,s=x

∂

∂rj
K(z, x) :=

∂

∂rj
K(r, s)

∣∣∣∣
r=z,s=x

,

where the derivative of the kernel matrix is understood to be element-wise. Define the C1 function
∂jKxy ∈ Rn(X ) as

∂jKxy(z) :=
∂

∂sj
K(z, x)y ∀z ∈ X .

The following result provides a useful reproducing property for the derivatives of functions in HK
that will be instrumental in deriving the solution algorithm.

Theorem 2 (Derivative Properties on HK (Micheli and Glaunés, 2014)). Let HK be a RKHS in
Rn(X ) with reproducing kernel K ∈ C2(X × X ). Then, for all (x, y) ∈ X × Rn:

(a) ∂jKxy ∈ HK for all j = 1, . . . , n.

(b) The following derivative reproducing property holds for all j = 1, . . . , n:〈
∂f(x)

∂xj
, y

〉
= 〈f, ∂jKxy〉HK ∀f ∈ HK .

21



As mentioned in Section 4, the bi-linearity of constraint (13) forces us to adopt an alternating
solution strategy whereby in the dynamics sub-problem, W is held fixed and we minimize Jd with
respect to {f̂, B̂}. In the metric sub-problem, {f̂, B̂} are held fixed and we minimize Jm with
respect to {W,w,w}.

In the following we derive several useful representer theorems to characterize the solution of the
two sub-problems, under the two simplifying assumptions introduced in Section 5.2.

6.2 Dynamics Sub-Problem

LetKf be the reproducing C2 kernel for an Rn-valued RKHSHfK and letKB be another reproducing
kernel for an Rn-valued RKHS HBK . Define the finite-dimensional subspaces:

Vf :=


Nc∑
i=1

Kf
xiai +

Nc∑
i=1

n∑
p=1

∂pK
f
xia
′
ip, ai, a

′
ip ∈ Rn

 ⊂ HfK , (25)

VB :=


Nc∑
i=1

KB
xici +

Nc∑
i=1

n∑
p=1

∂pK
B
xic
′
ip, ci, c

′
ip ∈ Rn

 ⊂ HBK . (26)

Note that all xi taken from the training dataset of (xi, ui, ẋi) tuples are a subset of Xc.

Theorem 3 (Representer Theorem for f,B). Suppose the reproducing kernel KB is chosen such
that all functions g ∈ HBK satisfy the sparsity structure gj(x) = 0 for j = 1, . . . , n −m. Consider
then the pointwise-relaxed dynamics sub-problem for problem (14):

min
f̂∈HfK , b̂j∈H

B
K ,j=1,...,m

Jd(f̂, B̂)

s.t. Fλ(xi; f̂,W ) � 0 ∀xi ∈ Xc . (27)

Suppose the feasible set for the LMI constraint is non-empty. Denote f∗ and b∗j , j = 1, . . . ,m as

the optimizers for this sub-problem. Then, f∗ ∈ Vf and {b∗j}Mj=1 ∈ VB.

Proof. For a fixed W , the constraint is convex in f̂ by linearity of the matrix Fλ in f̂ and ∂f̂/∂x. By
assumption (1), and the simplifying form for B⊥, the matrix Fλ is additionally independent of B.
Then, by strict convexity of the objective functional, there exists unique minimizers f∗, {bj}∗ ∈ HK ,
provided the feasible region is non-empty (Kurdila and Zabarankin, 2006).

Since Vf and VB are closed, by the Projection Theorem, HfK = Vf ⊕ V⊥f and HBK = VB ⊕ V⊥B .

Thus, any g ∈ HfK may be written as gVf + g⊥ where gVf ∈ Vf , g⊥ ∈ V⊥f , and
〈
gVf , g⊥

〉
HfK

= 0.

Similarly, any g ∈ HBK may be written as gVB+g⊥ where gVB ∈ VB, g⊥ ∈ V⊥B , and
〈
gVB , g⊥

〉
HBK

= 0.

Let f = fVf + f⊥ and bj = bVBj + b⊥j , and define

HV(x, u) = fVf (x) +
m∑
j=1

ujbVBj (x)

H⊥(x, u) = f⊥(x) +
m∑
j=1

ujb⊥j (x).

22



We can re-write Jd(f,B) as:

Jd(f,B) =

N∑
i=1

〈
HV(xi, ui)− ẋi, HV(xi, ui)− ẋi

〉
+ 2

〈
HV(xi, ui)− ẋi, H⊥(xi, ui)

〉
+
〈
H⊥(xi, ui), H

⊥(xi, ui)
〉

+ µf

(
‖fVf ‖2HfK

+ ‖f⊥‖2HfK

)
+ µb

 m∑
j=1

‖bVBj ‖
2
HBK

+ ‖b⊥j ‖2HBK

 .

Leveraging the reproducing property in (24),〈
HV(xi, ui)− ẋi, H⊥(xi, ui)

〉
=

〈
f⊥(xi) +

m∑
j=1

uji b
⊥
j (xi), H

V(xi, ui)− ẋi

〉

=
〈
f⊥,Kf

xi

(
HV(xi, ui)− ẋi

)〉
HfK︸ ︷︷ ︸

= 0

+

〈
m∑
j=1

uji b
⊥
j ,K

B
xi

(
HV(xi, ui)− ẋi

)〉
HBK︸ ︷︷ ︸

= 0

since Kf
xi

(
HV(xi, ui)− ẋi

)
∈ Vf , V⊥B is closed under addition, and KB

xi

(
HV(xi, ui)− ẋi

)
∈ VB.

Thus, Jd(f,B) simplifies to

N∑
i=1

∥∥HV(xi, ui)− ẋi
∥∥2

+ µf‖fVf ‖2HfK
+ µb

n∑
j=1

‖bVBj ‖
2
HBK

+

+

 N∑
i=1

∥∥∥H⊥(xi, ui)
∥∥∥2

+ µf‖f⊥‖2HfK
+ µb

m∑
j=1

‖b⊥j ‖2HBK

 . (28)

Now, the (p, q) element of ∂fW (xi) takes the form〈
∂wpq(xi)

∂x
, f(xi)

〉
=

〈
f,Kf

xi

∂wpq(xi)

∂x

〉
HfK

=

〈
fVf ,Kf

xi

∂wpq(xi)

∂x

〉
HfK

.

Column p of ∂f(xi)
∂x W (xi) takes the form

n∑
j=1

wjp(xi)
∂f(xi)

∂xj
=


∑n

j=1wjp(xi)
〈
∂f(xi)
∂xj

, e1

〉
...∑n

j=1wjp(xi)
〈
∂f(xi)
∂xj

, en

〉
 =


∑n

j=1wjp(xi)
〈
f, ∂jK

f
xie1

〉
HfK

...∑n
j=1wjp(xi)

〈
f, ∂jK

f
xien

〉
HfK



=


∑n

j=1wjp(xi)
〈
fVf , ∂jK

f
xie1

〉
HfK

...∑n
j=1wjp(xi)

〈
fVf , ∂jK

f
xien

〉
HfK

 ,

23



where ei is the ith standard basis vector in Rn. Thus, f⊥ plays no role in pointwise relaxation
of constraint (13) and thus does not affect problem feasibility. Given the assumed structure of
functions in HBK as provided in the theorem statement, the matrix in (16) is a valid annihilator

matrix for B̂(x). Consequently, b⊥ also has no effect on problem feasibility. Thus, by non-negativity
of the term in the square brackets in (28), we have that the optimal f lies in Vf and all optimal
{bj}mj=1 lie within VB.

The key consequence of this theorem is the reduction of the infinite-dimensional search problem
for the functions f and bj , j = 1, . . . ,m to a finite-dimensional convex optimization problem for

the constant vectors ai, a
′
ip, {c

(j)
i , c

(j)′

ip }mj=1 ∈ Rn, by choosing the function classes Hf = HfK and

HB = HBK . The key novelty of this result is in the derivation of a finite-dimensional representation
of the solution to a constrained functional optimization problem involving gradients. Next, we
characterize the optimal solution to the metric sub-problem.

6.3 Metric Sub-Problem

By the simplifying assumption in Section 5.1, constraint (12) requires that W⊥ be only a function
of the first (n−m) components of x. Thus, define κ : X × X → R as a scalar reproducing kernel
with associated real-valued scalar RKHS Hκ. Additionally, define κ̂ : X ×X → R as another scalar
reproducing kernel with associated real-valued scalar RKHS Hκ̂. In particular, κ̂ is only a function
of the first (n − m) components of x ∈ X in both arguments. Let κx and κ̂x denote κ(x, ·) and
κ̂(x, ·) respectively.

Define the kernel derivative functions:

∂jκx(z) :=
∂κ

∂rj
κ(r, s)

∣∣∣∣
(r=x,s=z)

∂j κ̂x(z) :=
∂κ̂

∂rj
κ(r, s)

∣∣∣∣
(r=x,s=z)

∀z ∈ X .

From (Zhou, 2008), it follows that the kernel derivative functions satisfy the following two proper-
ties, similar to Theorem 2:

∂jκx ∈ Hκ ∀j = 1, . . . , n, x ∈ X
∂h

∂xj
(x) = 〈h, ∂jκx〉Hκ ∀h ∈ Hκ.

A similar property holds for ∂j κ̂x and Hκ̂. Consider then the following finite-dimensional spaces:

Vκ :=


Nc∑
i=1

aiκxi +

Nc∑
i=1

n∑
p=1

a′ip ∂pκxi , ai, a
′
ip ∈ R

 ⊂ Hκ (29)

Vκ̂ :=


Nc∑
i=1

ciκ̂xi +

Nc∑
i=1

n−m∑
p=1

c′ip ∂pκ̂xi , ci, c
′
ip ∈ R

 ⊂ Hκ̂ (30)

and the proposed representation for W (x):

W (x) =

Nc∑
i=1

Θ̂iκ̂xi(x) +

Nc∑
i=1

n−m∑
j=1

Θ̂′ij∂j κ̂xi(x)

+

Nc∑
i=1

Θiκxi(x) +

Nc∑
i=1

n∑
j=1

Θ′ij∂jκxi(x),

(31)

24



where Θ̂, Θ̂′ ∈ Sn are constant symmetric matrices with non-zero entries only in the top-left (n −
m)×(n−m) block, and Θ,Θ′ ∈ Sn are constant symmetric matrices with zero entries in the top-left
(n−m)× (n−m) block.

Theorem 4 (Representer Theorem for W ). Consider the pointwise-relaxed metric sub-problem for
problem (14):

min
wpq∈Hκ̂,(p,q)∈{1,...,(n−m)}

wpq∈Hκ else
w,w∈R>0

Jm(W,w,w)

s.t. Fλ(xi; f̂,W ) � 0, ∀xi ∈ Xc, (32)

wIn �W (xi) � wIn, ∀xi ∈ Xc, (33)

Suppose the feasible set of the above LMI constraints is non-empty. Denote W ∗ as the optimizer
for this sub-problem. Then, W ∗ takes the form given in (31).

Proof. Notice that while the regularizer term is strictly convex, the surrogate loss function for the
condition number is affine. However, provided the feasible set is non-empty, there still exists a
minimizer (possibly non-unique) for the above sub-problem.

Since Vκ and Vκ̂ are closed, by the Projection Theorem, Hκ = Vκ ⊕ V⊥κ and Hκ̂ = Vκ̂ ⊕ V⊥κ̂ .
Thus, any h ∈ Hκ may be written as hVκ + h⊥ where hVκ ∈ Vκ, h⊥ ∈ V⊥κ and

〈
hVκ , h⊥

〉
Hκ = 0. A

similar decomposition property holds for Hκ̂.
Now, consider the following chain of equalities for the (p, q)th element of ∂fW⊥(xi):

∂fw⊥pq(xi) =

n−m∑
j=1

∂w⊥pq(xi)

∂xj
f j(xi)

=
n−m∑
j=1

〈
w⊥pq , ∂j κ̂xi

〉
Hκ̂

f j(xi)

=

〈
w⊥pq ,

n−m∑
j=1

f j(xi)∂j κ̂xi

〉
Hκ̂

=

〈
wVκ̂⊥pq ,

n−m∑
j=1

f j(xi)∂j κ̂xi

〉
Hκ̂

,

since
∑n−m

j=1 f j(xi)∂j κ̂xi ∈ Vκ̂. Trivially, the (p, q) element of W (xi) takes the form

wpq(xi) =

{〈
wVκ̂pq , κ̂xi

〉
Hκ̂

if (p, q) ∈ {1, . . . , (n−m)}〈
wVκpq , κxi

〉
Hκ

else.

Thus, constraints (13) and uniform definiteness at the constraint points in Xc can be written in
terms of functions in Vκ and Vκ̂ alone. By strict convexity of the regularizer, and recognizing that
W (x) is symmetric, the result follows.

25



Similar to the previous section, the key property here is the reduction of the infinite-dimensional
search over W (x) to the finite-dimensional convex optimization problem over the constant sym-
metric matrices Θi,Θ

′
ij , Θ̂i, Θ̂

′
ij by choosing the function class for the entries of W using the scalar-

valued RKHS.
At this point, both sub-problems are finite-dimensional convex optimization problems. Cru-

cially, the only simplifications made are those given in Section 5.2. However, a final computational
challenge here is that the number of parameters scales with the number of training (N) and con-
straint (Nc) points. This is a fundamental challenge in all non-parametric methods. In the next
section we present the dimensionality reduction techniques used to alleviate these issues.

6.4 Approximation via Random Matrix Features

The size of the problem using full matrix-valued kernel expansions grows rapidly in Nc · n, the
number of constraint points times the state dimensionality. This makes training slow for even
moderately long demonstrations in low-dimensional settings. The induced dynamical system is slow
to evaluate and integrate at inference time. Random feature approximations to kernel functions have
been extensively used to scale up training complexity and inference speed of kernel methods (Rahimi
and Recht, 2007; Avron et al., 2016) in a number of applications (Huang et al., 2014). The quality
of approximation can be explicitly controlled by the number of random features. In particular,
it has been shown (Rahimi and Recht, 2008) that any function in the RKHS associated with the
exact kernel can be approximated to arbitrary accuracy by a linear combination of a sufficiently
large number of random features.

These approximations have only recently been extended to matrix-valued kernels (Minh, 2016;
Brault et al., 2016). Given a matrix-valued kernel K, one defines an appropriate matrix-valued
feature map Φ : X → Rd×n with the property

K(x, z) ≈ Φ(x)TΦ(z),

where d controls the quality of this approximation. A canonical example is the Gaussian separable

kernel Kσ(x, z) := e
−‖x−z‖22

σ2 In with feature map:

Φ(x) =
1√
s


cos(ωT1 x)
sin(ωT1 x)

...
cos(ωTs x)
sin(ωTs x)

⊗ In,

where ω1, . . . , ωs are i.i.d. draws from N (0, σ−2In) and ⊗ denotes the Kronecker product.
By construction, the linear span {Kzy | z ∈ X , y ∈ Rn} is dense in HK . Thus, any function

g in the associated RKHS HK can be arbitrarily well-approximated by the expansion
∑N ′

j Kzjyj ,
which, in turn, may be approximated as

g(x) ≈
N ′∑
j=1

K(x, zj)yj ≈
N ′∑
j=1

Φ(x)TΦ(zj)yj = Φ(x)Tα,

26



where α =
∑N ′

j=1 Φ(zj)yj ∈ Rd. Applying this approximation for the spaces2 HfK , HBK , Hκ and
Hκ̂, we obtain finite-dimensional representations of the optimal f, {bj},W that scale with the order
of the matrix feature map, instead of Nc · n. Indeed, these are the representations defined in
eqs. (19)–(21). To complete the derivation of the cost terms Ĵd and Ĵm in problem (22), we address
the functional regularization terms as follows. From the definition of the inner product in HK :

‖g‖2HK =
N ′∑
i,j=1

〈yi,K(zi, zj)yj〉 ≈
N ′∑
i,j=1

〈Φ(zi)yi,Φ(zj)yj〉 =

〈
N ′∑
i=1

Φ(zi)yi,
N ′∑
j=1

Φ(zj)yj

〉
= ‖α‖2 .

7 Solution Algorithm

The fundamental structure of the solution algorithm consists of alternating between the dynam-
ics and metric sub-problems derived from problem (22). However, there are three fundamental
challenges in solving these problems. First, enforcing the constraints exactly requires a feasible
initialization (either with the dynamics or metric function parameters). Given our use of random
matrix feature approximations, this is simply intractable. Second, even with an initial feasible
guess, due to the alternation, one may lose feasibility within either of the sub-problems stated in
Theorems 3 and 4. This is a fundamental numerical challenge of bilinear optimization. Third,
since the constraint set Xc includes at least the state samples from the demonstration tuples (plus
additional random samples from X ), enforcing the LMIs over all constraint points at each iteration
is again computationally intractable.

To address these challenges, we present a solution algorithm that (i) eliminates the need for
a feasible initial guess, thereby permitting cold-starts, (ii) leverages sub-sampling and dynamic
updating of the constraint set for each iteration sub-problem to maintain tractability, and (iii)
performs feasibility corrections using efficient, unconstrained second-order optimization. We first
give the full formulation of the relevant optimization sub-problems and then provide a pseudocode
summary of the algorithm at the end.

Let X
(k)
c denote the finite sample constraint set at iteration k. In particular, X

(k)
c ⊂ Xc

with N
(k)
c := |X(k)

c | being ideally much less than Nc, the cardinality of the full constraint set Xc.
Formally, each major iteration k is characterized by four minor steps (sub-problems):

1. Finite-dimensional dynamics sub-problem:

min
α,βj ,j=1,...,m,

s≥0

N∑
i=1

‖f̂(xi) + B̂(xi)ui − ẋi‖2 + µf‖α− α(k−1)‖2

+ µb

m∑
j=1

‖β − β(k−1)
j ‖2 + µs‖s‖1 (34a)

s.t. Fλ+ελ(xi;α, θ̃
(k−1)
ij ) � s(xi)In−m ∀xi ∈ X(k)

c (34b)

s(xi) ≤ s̄(k−1) ∀xi ∈ X(k)
c , (34c)

where {α(k−1), β
(k−1)
j , θ̃

(k−1)
ij } are the dynamics and metric parameters obtained from the

previous major iteration3, and µs ∈ (0, 1) is an additional regularization parameter for s, a

2To apply this decomposition to W (x), we simply leverage vector-valued feature maps for each entry of W (x).
3We set α(0), {β(0)

j }
m
j=1, θ̃

(0)
ij = 0.

27



non-negative slack vector in RN
(k)
c . The quantity s̄(k−1) is defined as

s̄(k−1) := max
xi∈Xc

λ̄
(
F (k−1)
λ+ελ

(xi)
)
, where

F (k−1)
λ+ελ

(xi) := Fλ+ελ(xi;α
(k−1), θ̃

(k−1)
ij ).

That is, s̄(k−1) captures the worst violation for the stability LMI over the entire constraint

set Xc, given the parameters at the end of iteration k − 1. Denote α(k), {β(k)
j }mj=1 to be the

optimizers of this sub-problem.

2. Compute an upper bound s̄(k)′ on the maximum allowed violation of the stability

LMI for the current constraint set X
(k)
c :

while min
xi∈X

(k)
c

λ (W (xi)) < δw + εw (35a)

do min
θ̃ij

∑
xi∈X

(k)
c

[
ψw
(
λ̄
(
(δw + εw)In −W (xi)

))
+

+ µ′wψF

(
λ̄
(
Fλ+ελ(xi;α

(k), θ̃ij)
))]

+

+ µ′w
∑
i,j

‖θ̃ij − θ̃(k−1)
ij ‖2, (35b)

µ′w ← 0.5µ′w (35c)

where µ′w > 0 is a regularization parameter that is exponentially decayed until the while

loop termination condition is met. The functions ψw(·) and ψF (·) are penalty functions. Let
θ̃′ij be the metric parameters when the termination condition is met. We then set

s̄(k)′ := max
xi∈X

(k)
c

λ̄
(
Fλ+ελ(xi;α

(k), θ̃′ij)
)
. (36)

The primary objective of this step is to compute an upper bound on the stability LMI over

the constraint set X
(k)
c with respect to a dual metric that satisfies the positive definiteness

condition at all points in this set. This upper-bound will then be used as a constraint within
the metric sub-problem, described next. The reason one cannot use s̄(k−1) as in the dynamics
sub-problem is because this value is computed over the entire constraint set at the end of the
previous iteration, with a metric that is potentially not positive definite at all points. Since
the metric sub-problem strictly enforces the positive definiteness constraint on W , s̄(k−1) is
not a valid upper bound on the stability LMI constraint, and can lead to infeasibility for the
metric sub-problem. As long as there exists a set of θ̃ij such that the dual metric satisfies
the positive definiteness constraint at all points, the while loop above will always terminate
given a sufficiently small µ′w. In our implementation, we initialize µ′w to be equal to µw.
In Section 7.1 we provide an efficient second-order method for solving this unconstrained
optimization.

28



3. Finite-dimensional metric sub-problem:

min
θ̃ij ,w,w,s≥0

(w − w) + µw
∑
i,j

‖θ̃ij − θ̃(k−1)
ij ‖2 + (1/µs)‖s‖1 (37a)

s.t. Fλ+ελ(xi;α
(k), θ̃ij) � s(xi)In−m ∀xi ∈ X(k)

c (37b)

s(xi) ≤ s̄(k)′ ∀xi ∈ X(k)
c (37c)

(w + εw)In �W (xi) � wIn ∀xi ∈ X(k)
c , (37d)

w ≥ δw. (37e)

The key elements to note here are (i) the use of α(k), i.e., the computed dynamics parameters
from the dynamics sub-problem; (ii) the 1/µs regularization term on the slack variable to
emphasize that the primary objective of the metric sub-problem is to reduce the overall
violation of the stability constraint; and (iii) use of the upper-bound s̄(k)′ computed from
Step 2 to force monotonic improvement in constraint violation.

4. Update X
(k)
c sub-problem.

Choose a tolerance parameter δ > 0. Then, define

ν(k)(xi) := max
{
λ̄
(
Fkλ+ελ

(xi)
)
, λ̄
(
(δw + εδ)In −W (xi)

)}
∀xi ∈ Xc, (38)

and set

X(k+1)
c :=

{
xi ∈ X(k)

c : ν(k)(xi) > −δ
}⋃{

xi ∈ Xc \X(k)
c : ν(k)(xi) > 0

}
. (39)

Thus, in the update X
(k)
c step, we balance addressing points where constraints are being

violated (ν(k) > 0) and discarding points where constraints are satisfied with sufficient strict
inequality (ν(k) ≤ −δ). This prevents overfitting to any specific subset of the constraint
points. A potential variation to the union above is to only add up to L constraint violating

points from Xc\X(k)
c (e.g., corresponding to the L worst violators), where L is a fixed positive

integer. Indeed this is the variation used in our experiments and was found to be extremely

efficient in balancing the size of the set X
(k)
c and thus, the complexity of each iteration. This

adaptive sampling technique is inspired by exchange algorithms for semi-infinite optimization,
as the one proposed in (Zhang et al., 2010) where one is trying to enforce the constraints at
all points in a compact set X .

The use of the modified regularization terms above (i.e., penalizing change in the parameters
from the previous iteration as opposed to absolute penalty) is, in the spirit of trust region methods,

to prevent large updates to the parameters due to the dynamically updating constraint set X
(k)
c .

At the first major iteration of the problem however, with α(0), {β(0)
j }mj=1, θ̃ij = 0, this is the same as

an absolute regularization term. To ensure non-degeneracy in the stability LMI constraint within
the first dynamics sub-problem iteration, we initialize the algorithm with W (xi) = In. The full
pseudocode for the CCM-Regularized (CCM-R) dynamics learning algorithm is summarized in
Algorithm 1.

Some comments are in order. First, convergence in Algorithm 1 is declared if either progress
in the solution variables stalls or all constraints are satisfied within tolerance. Using dynamic

29



Algorithm 1 CCM - Regularized (CCM-R) Dynamics Learning

1: Input: Dataset {xi, ui, ẋi}Ni=1, constraint set Xc, regularization constants {µf , µb, µw, µs}, con-
straint tolerances {ελ, δw, εw}, discard tolerance parameter δ, Initial # of constraint points:

N
(0)
c , Max # iterations: Nmax, termination tolerance ε.

2: k ← 1, converged ← false, W (x)← In, {α(0), {β(0)
j }mj=1, θ̃ij} ← 0.

3: X
(0)
c ← RandSample(Xc, N

(0)
c )

4: while ¬converged ∧ k < Nmax do

5: {α(k), {β(k)
j }} ← Solve (34)

6: s̄(k)′ ← Solve (35)

7: {θ̃(k)
ij , w, w} ← Solve (37)

8: X
(k+1)
c , s̄(k), ν(k) ← Update X

(k)
c using (39)

9: ∆← max
{
‖α(k) − α(k−1)‖∞, ‖β(k)

j − β(k−1)
j ‖∞, ‖θ̃(k)ij − θ̃

(k−1)
ij ‖∞

}
10: if ∆ < ε or ν(k)(xi) < ε ∀xi ∈ Xc then
11: converged ← true.
12: end if
13: k ← k + 1.
14: end while

sub-sampling for the constraint set at each iteration implies that (i) the matrix function W (x) at

iteration k resulting from variables θ̃
(k)
ij does not have to correspond to a valid dual metric for

the interim learned dynamics at iteration k, and (ii) a termination condition based on constraint
satisfaction at all Nc points is justified by the fact that at each iteration, we are solving relaxed
sub-problems that collectively generate a sequence of lower-bounds on the overall objective.

Second, as a consequence of this iterative procedure, the dual metric and contraction rate pair
{W,λ} do not possess any sort of “control-theoretic” optimality. For instance, in (Singh et al.,
2017), for a known stabilizable dynamics model, both these quantities are optimized for robust
control performance. In this work, these quantities are used solely as regularizers to promote
stabilizability of the learned model. Following the recovery of a fixed dynamics model from the
algorithm, one may leverage global CCM optimization algorithms as the one presented in (Singh
et al., 2017) to compute an optimal robust CCM.

7.1 Solving the Upper Bound Sub-Problem

Step 2 in the iterative algorithm outlined in the previous section entails solving a non-smooth, but
convex, unconstrained optimization to compute a viable upper bound on the stability LMI for its
inclusion as a constraint within the metric sub-problem. While the problem can be formulated as
a Semi-Definite Program (SDP) through the use of epigraph LMIs, this would result in yet another
computationally intensive step. Instead, recognizing that the purpose of this part of the algorithm
is not to update any problem variables, one can use faster unconstrained optimization techniques
to approximately solve this problem.

Specifically, we employ Newton descent to solve this problem with backtracking line search.
The issue however, lies in taking the second order derivatives of the maximum eigenvalue function
of an affinely parameterized matrix (recall W is linear in θ̃ij and Fλ is linear in θ̃ij for fixed α). For

30



a given affinely parameterized symmetric matrix G(θ) ∈ Rd×d, the gradient and Hessian of λ̄(G(θ))
with respect to θ has the components (Overton and Womersley, 1995):

∂λ̄(G)

∂θi
(θ) = v̄T1

∂G(θ)

∂θi
v̄1,

∂2λ̄(G)

∂θi∂θj
(θ) = 2

d∑
k>1

v̄T1
∂G(θ)
∂θi

v̄k · v̄T1
∂G(θ)
∂θj

v̄k

λ1 − λk
,

where we assume the eigenvalue ordering λ1 ≥ · · · ≥ λd, and v̄1, . . . , v̄d are the associated normalized
eigenvectors. Clearly, the Hessian is undefined when the multiplicity of the maximum eigenvalue is
greater than one. While there exist several works within the literature on modified parameteriza-
tions of the matrix to allow the use of second order methods, these techniques require knowing the
multiplicity of the maximum eigenvalue at the optimal parameters – which is impossible to guess
in this case.

Instead, we leverage a stochastic smoothing approximation borrowed from (D’Aspremont and
Karoui, 2014), whereby one approximates the maximum eigenvalue of G(θ) as

max
i=1,...,k

λ̄
(
G(θ) +

σ

d
ziz

T
i

)
,

where σ > 0 is a small noise parameter, and zi are i.i.d. samples from N (0, Id). In particular,
λ̄
(
G(θ) + ε

nziz
T
i

)
is unique with probability one, for any zi ∼ N (0, Id) (see (D’Aspremont and

Karoui, 2014), Prop. 3.3 and Lemma 3.4). While the algorithm in (D’Aspremont and Karoui,
2014) leverages a finite-sample expectation of the randomized function above and its gradient, for
our implementation, we simply leverage the uniqueness property induced by the use of the random
rank one perturbation, and compute the gradient and Hessian expressions using the eigenvalue
decomposition of the matrix G(θ) + (ε/d)zzT , where z is a single Gaussian vector sample. Ad-
ditionally, we employ early termination of the Newton iterations if the while loop termination
condition is met by the current iterate.

7.2 Revisiting PVTOL

We now revisit the results presented in Section 2.1 and shed additional light on the performance of
the CCM-R model.

The training dataset was generated in three steps. First, a fixed set of waypoint paths in
(px, pz) was randomly generated. Second, for each waypoint path, multiple smooth polynomial
splines were fitted using a minimum-snap algorithm. To create variation amongst the splines, the
waypoints were perturbed within Gaussian balls and the time durations for the polynomial segments
were also randomly perturbed. Third, the PVTOL system was simulated with perturbed initial
conditions and the polynomial trajectories as references, and tracked using a sub-optimally tuned
Proportional-Derivative (PD) controller, thereby emulating a noisy or imperfect demonstrator.
These final simulated paths were sub-sampled at a 0.1 s resolution to create the datasets. The
variations created at each step of this process were sufficient to generate a rich exploration of the
state-space for training.

The matrix feature maps used for all models (N-R, R-R, and CCM-R) are derived from the
random matrix feature approximation of the Gaussian separable kernel; the relevant parameters
are provided in Appendix A. We enforced the CCM regularizing constraints for the CCM-R model

31



at Nc = 2426 points in the state-space, composed of the N demonstration points in the training
dataset and randomly sampled points from X (recall that the CCM constraints do not require
samples of u, ẋ). The contraction rate λ was set to 0.1 and the termination tolerance ε was set to
0.01. All other tolerance parameters are provided in Appendix A.

As the CCM constraints were relaxed to hold pointwise on the finite constraint set Xc as
opposed to everywhere on X , in the spirit of viewing these constraints as regularizers for the
model, we simulated both the R-R and CCM-R models using the TV-LQR feedback controller.
This also helped ensure a more direct comparison of the quality of the learned models themselves,
independently of the tracking feedback controller. The results are virtually identical using a tracking
MPC controller and yield no additional insight.

Given the inherently non-convex nature of the original problem (recall the bilinear matrix
inequality) and the complex alternations used within the learning algorithm, exact convergence
analysis remains elusive. In its place, we provide an empirical study of the convergence behavior.
Figure 6 plots the training curves generated by the CCM-R algorithm for varying demonstration
dataset sizes N . In particular, we plot (i) the evolution of the distribution of the constraint violation
vector ν defined in (38) over the training constraint set Xc, and (ii) evolution of the regression
error and fraction of violations (i.e., average number of points with ν > 0) over an independent
validation set, as a function of global iteration k. The dynamic constraint set was initialized with
250 points (sampled randomly from the 2426 constraint points in the full training constraint set),

and over all iterations, the size of X
(k)
c remained below 400 points – a drastic factor of improvement

over an intractable brute-force approach. For N ∈ {100, 250, 500}, the algorithm terminated with
all constraints satisfied below the termination threshold of ε = 0.01. For N = 1000, we manually
terminated the algorithm after 12 global iterations after observing a stall in the number of violations.

From Figure 6a, we see the effectiveness of the sub-sampling constraint set method in efficiently
eliminating all training violations. Several comments are in order regarding Figure 6b. First, as the
number of demonstration tuples N goes down, the curves shift further to the right, indicating higher
validation error, as expected. Second, the iterates seem to clearly exhibit a two-phase convergent
behavior. During the first phase, the fraction of violations on the validation set drops rapidly and
approaches a steady-state. During the second phase, the fraction of violations remains roughly
constant as the validation error drops monotonically, with decreasing drop rate. The training and
final validation errors for all models are summarized in Table 1.

N-R R-R CCM-R

N Train err. Val err. Train err. Val err. Train err. Val err. Frac. viol.

100 0.001 0.072 0.125 0.380 0.012 0.342 0.0008 (0.010)
250 0.003 0.088 0.125 0.243 0.010 0.223 0.0004 (0.009)
500 0.004 0.047 0.092 0.172 0.006 0.178 0.0016 (0.008)
1000 0.01 0.056 0.08 0.146 0.003 0.138 0.0021 (0.007)

Table 1: Comparison of average (over N tuples) training and validation (over 2000 tuples) regression error norms
for all 3 models. Also shown are the fraction of violations (ν > 0) on the training (validation) sets for the CCM-R
models. The termination threshold for CCM-R training was ν < ε = 0.01 for all points in the training constraint set.

An interesting trend to observe here is that the training errors for the N-R and CCM-R models
are significantly closer (by an order of magnitude) together than R-R and N-R. Consistent with

32



the trend in Figure 5, N-R features the smallest validation errors. Thus, while the CCM-R model
manages to perform well in terms of regression error on the training set (almost on par with N-R),
the resulting model does not suffer from the overfitting trend observed with the N-R model.

(a) ±2.5σ spread of the constraint violation vector ν over training set as
a function of global iteration. #itr denotes the total number of global
iterations.

(b) Evolution of mean regression error norm and fraction of violations over
validation set with global iteration number. The markers delineate the iter-
ations. The curves proceed from right to left.

Figure 6: Simulation data training curves for all CCM-R models.

Surprisingly, the final validation errors of the CCM-R models and the R-R models are almost
identical. Despite this however, the CCM-R model significantly outperforms the R-R model, espe-
cially when learned from smaller supervised datasets. What sets the CCM-R model apart is the
manner in which the dynamics sub-problem improves the regression error over multiple iterations –
through the joint minimization of regression error and stability LMI violations. Effectively, as seen
in Figure 6b, the iterates move along a level set of the constraint violations, decreasing regression
error while maintaining control over the stabilizability of the learned model. This validates the
benefit of using a control-theoretic regularization technique that is tailored to the motion planning
task, and the fragility of only using traditional measures of performance (such as regression error)
for evaluating learned dynamical models4.

4Code for data generation, training, and evaluation is provided at https://github.com/StanfordASL/SNDL.

33

https://github.com/StanfordASL/SNDL


While the analytical PVTOL model studied in simulation is indeed an example of a system that
is CCM stabilizable (see (Singh et al., 2017)), in the next section we deploy the algorithm on a
full 3D quadrotor testbed, shown in Figure 7, with partially closed control loops to approximately
emulate the PVTOL dynamics.

8 Validation on Quadrotor Testbed

Our quadrotor testbed consists of (i) a standard DJI F330 frame, (ii) a Pixhawk autopilot running
the estimator and lower-level thrust and angular rate controllers, and (iii) a companion on-board
ODROID-XU4 computer running ROS nodes for motion planning and trajectory tracking con-
troller5 (which generates the thrust and angular rate setpoints for Pixhawk). There is also an
Optitrack motion capture system providing inertial position and yaw estimates at 120 Hz, which
is fused with the onboard EKF on the Pixhawk.

Figure 7: Quadrotor experimental platform, equipped with Pixhawk autopilot (PX-AP) for low-level (thrust and
angular rate) control, and ODROID companion computer for planning and trajectory tracking control.

The objective of the flight experiments was to verify whether the performance trends observed in
simulation for a relatively simple dynamics model, that was a priori known to be CCM stabilizable,
carried over to a far more complex setting where this is unknown. The dynamics to be learned are
for the motion of the quadrotor within the vertical plane. Accordingly, the training data consisted of
samples from trajectories flown within the plane autonomously using a nonlinear trajectory tracking
controller. For evaluation, the generated planar trajectories will be tracked using a combination
of an in-plane controller, derived from the learned dynamics model, and an out-of-plane controller
derived from known principles (detailed in Section 8.2). The purpose of the out-of-plane controller
is simply to keep the quadrotor aligned and fixed within the vertical plane, thereby permitting an
evaluation of the quality of the learned planar dynamics.

This is a complex system subject to noise and nonlinear disturbances stemming from aerody-
namic effects (e.g., ground-effect) and residual out-of-plane motion, and therefore constitutes a
challenging evaluation benchmark.

State and Control Parameterization: We adopt the North-East-Down (NED) body-frame
convention and the XY Z-Euler angle sequence parameterized by, in order, roll (φ), pitch (θ), and
yaw (ψ) angles. For simplicity, we fixed the nominal yaw angle to 0 and inertial X-position to be

5The code for these ROS nodes is available for download at https://github.com/StanfordASL/asl_flight.

34

https://github.com/StanfordASL/asl_flight


constant so that the planar motion is aligned with the inertial Y -Z plane. The state representation
used for the planar dynamics is therefore: x = (py, pz, φ, vy, vz, ωx) where (py, pz) are the inertial
position in the Y -Z plane, (vy, vz) are the body-frame velocities, and ωx is the body-frame angular
rate. The control inputs are set to be the desired net normalized thrust τ and desired body rate φ̇c.
These inputs are fed into the PX4 autopilot, which uses a fast on-board control loop to realize these
commands.

The supervisory signal ẋ is provided by (ṗy, ṗz, ωx, v̇y, v̇z, ω̇x). Note that by kinematics, ωx =
φ̇ cos(θ) cos(ψ) + θ̇ sin(ψ). Thus, any non-zero ψ, and/or non-zero θ̇ with non-zero ψ can introduce
bias errors into the training data. The signals ω̇x and (v̇y, v̇z) were obtained by convolving a
finite-difference derivative estimate through a moving-average filter.

8.1 Model Training

Training Data Collection: To collect the training data, we created a set of training trajecto-
ries within the plane consisting of clockwise and counter-clockwise circles at varying speeds, and
“swoop” trajectories (see Figure 8) where the quadrotor swoops towards the ground in a parabolic
arc and travels in a straight line close to the ground. The goal of the swoops was to learn data per-
taining to ground-effect aerodynamic disturbances. All trajectories were tracked using a CCM-based
feedback controller derived from a nominal model of a quadrotor that neglects any aerodynamic
disturbances. That is, the tracking controller and designed trajectories do not pre-compensate for
any aerodynamic disturbances. Instead, we would like for such strategies to evolve directly from
the learned model and subsequently derived tracking controller.

Figure 8: Examples of flown trajectories with a 3D nonlinear tracking feedback controller to create the training
dataset. Left: clockwise circle with radius 1 m, period 6 s, and a nominal speed of 1.05 m/s. Right: Swoop
trajectory to excite the ground-effect aerodynamic disturbances. Notice the deviation of the quadrotor from the
desired trajectory as it approaches the ground. Ideally, a model learned from such data should generate nominal
control signals that compensate for such effects.

We collected data from 3 clockwise and 3 counter-clockwise 1 m radius circles at periods of 10, 8
and 6 seconds (corresponding to nominal speeds of 0.63, 0.79, and 1.05 m/s), and two symmetric

35



swoop trajectories. Figure 9 shows the yaw and inertial X tracking errors for the fastest clockwise
training circle. Both these quantities pertain to the out-of-plane motion and need to be small in
order to minimize any induced bias within the planar motion, which is significantly coupled with
the out-of-plane motion. This is indeed observed to be the case, validating the suitability of the
collected data to train a planar dynamics model.

Figure 9: Out-of-plane errors, i.e., inertial X motion and pitch and yaw angles. All errors are sufficiently small,
validating the use of the remaining data to train a planar dynamics model.

Figure 8 shows a trace of a swoop training trajectory. Note the clear influence of ground-effect
on the Z-tracking error as the quadrotor dips towards the ground and settles into the straight line
path. These are exactly the sort of effects we wish to learn.

The complete dataset consists of approximately 2 minutes of flight time, logged at 250 Hz. After
filtering the finite-difference derivative estimates, we further sub-sampled the data to avoid aliasing
effects, and extracted training and validation datasets of 1000 and 3000 (x, u, ẋ) tuples respectively.

Models Learned: To investigate the hypothesized trend where the control-theoretic regularization
from the CCM approach dominates for small supervised training dataset sizes, we learned R-R and
CCM-R models at N = 150 and N = 1000. For the CCM-R models, the full training constraint
set Xc comprised of the state samples from the demonstration tuples, plus up to 1600 additional
state samples from the collected trajectories, and 500 independently sampled Halton points within
the state-space. In total, for both the N = 150 and N = 1000 models, a total of 3100 constraint
points were used.

The dimensionality of the feature space for f̂, {b̂j}2j=1, and W were held the same as from the

PVTOL simulations (corresponding to α, βj ∈ R576, and θ̃ij ∈ R72). The constant µf was held
fixed at 10−3 for both R-R and CCM-R models and both N , and µb was set to 10−2. The need

36



for a higher regularization constant for βj stemmed from the high noise content in the φ̇c and ω̇x
signals. The constant µw was set to 10−3 for N = 150 and 10−4 for N = 1000, as in the PVTOL
simulations. Figure 10 gives the training curve plots for the N = 150 and N = 1000 CCM-R
models, and Table 2 summarizes the final measures of performance. The contraction rate λ was
again set to 0.1 and all other tolerances from the simulations were held the same. CCM-R models
converged in 5 iterations for N = 150 and 4 iterations for N = 1000.

(a) ±2.5σ spread of the constraint violation vector ν over training set as a function
of global iteration. #itr denotes the total number of global iterations.

(b) Evolution of mean regression error norm and fraction of violations over valida-
tion set with global iteration number. The markers delineate the iterations. The
curves proceed from left to right.

Figure 10: Testbed data training curves for both CCM-R models.

37



R-R CCM-R

N Train err. Val err. Train err. Val err. Frac. viol.

150 4.077 4.549 0.399 4.726 0.0013 (0.0011)
1000 4.149 4.289 0.167 4.305 0.0048 (0.0005)

Table 2: Comparison of average (over N tuples) training and validation (over 3700 tuples) regression error norms
for all 3 models. Also shown are the fraction of violations (ν > 0) on the training (validation) sets for the CCM-R
models. The termination threshold for CCM-R training was ν < ε = 0.01 for all points in the training constraint set.

From Table 2, we note that the final regression validation errors for R-R and CCM-R are again
close together, as in the simulation case. However, the training curves in Figure 10 appear to go in
the opposite direction, i.e., validation regression error for CCM-R grows with iterations, starting
from around 4.558 (almost identical to the R-R model), and growing to a final value of 4.726 as the
number of violations converges to 0. A potential reason could be that the noise in the demonstration
tuples (i.e., from ẋ) forces more drastic updates in the parameters in order to find a compatible dual
metric W . Nevertheless, as will be seen in the evaluation results, this small sacrifice in validation
error performance works in the CCM-R model’s favor.

8.2 Out-of-Plane Control for Enabling Evaluation

The out-of-plane errors in the training data were quite small (since the tracking controller was a
full 3D state feedback controller). The learned planar dynamics will be used to generate a planar
desired trajectory and LQR feedback tracking controller. To ensure that the quadrotor remains
within the plane however, we need to separately close the loops on inertial X and yaw motion.

The nominal (ignoring disturbances) equation for px is given by:

p̈x = −τ sin(θ),

which is completely decoupled from the planar dynamics. In order to regulate px to an arbitrary
constant p̄x (without loss of generality, assume p̄x = 0), given a desired τ > 0 computed using
the planar control loop, we choose a desired inertial acceleration p̈x,des := −kxpx − kvṗx, where
kx, kv > 0 are control gains. Inverting the dynamics above, we obtain a desired pitch command θc:

sin(θc) = −
p̈x,des
τ

=
kxpx + kvṗx

τ
.

From the above equation, we deduce a desired nominal pitch rate θ̇des:

θ̇des cos(θc) =
τ(kxṗx + kvp̈x)− τ̇(kxpx + kvṗx)

τ2
≈ kxṗx

τ
,

where we neglect the τ̇ and p̈x terms. The actual pitch rate command θ̇c sent to the quadrotor is
then given by:

θ̇c = θ̇des + kθ(θc − θ),
which is a combination of the feedforward desired pitch rate plus a proportional feedback term on
the error with respect to the desired pitch angle with gain kθ > 0. Finally, to keep yaw ψ at zero,
we implemented a simple proportional controller to generate a desired yaw rate command ψ̇c:

ψ̇c = −kψψ,

38



with gain kψ > 0. In the next section we provide plots of px, θ, and ψ to check how well the planar
assumption holds.

8.3 Evaluation

Test Trajectory Generation: The evaluation task is similar to that used for simulations, except
that instead of initializing the quadrotor at random initial configurations and asking it to stabilize
to a hover (an arguably dangerous test), we designed a desired nominal trajectory in the Y -Z
plane consisting of segments of a continuous, smooth figure-eight, denoted as (pref

y (t), pref
z (t)). The

nominal state and control trajectory for the quadrotor was then computed as the solution to the
following trajectory optimization problem:

(x∗(·), u∗(·)) = argmin
x(·),u(·)

∫ T

0

[
py(t)− pref

y (t)

pz(t)− pref
z (t)

]T
Q

[
py(t)− pref

y (t)

pz(t)− pref
z (t)

]
+

[
τ(t)− g
φ̇c(t)

]T
R

[
τ(t)− g
φ̇c(t)

]
dt,

where g is the gravitational acceleration, T = 10 s, and Q,R are cost weighting matrices in S>0
2 .

To avoid the initial jump in desired velocity for a quadrotor starting from rest, we designed the
trajectory in three segments (see Figure 11). The quadrotor accelerates along half of the figure-
eight path to full speed (point A to B in Figure 11) in the first segment. This is followed by a full
figure-eight loop (back to B) in the second segment. Finally the quadrotor decelerates along the
second half of the figure-eight back to zero velocity during the third segment. Each segment was
designed to overlap with the desired figure-eight shape, and the desired speed was modulated along
the path using a smooth time-varying phase function for the first and third segments. These two
segments along with the speed along the trajectory are depicted in Figure 11.

Figure 11: Illustration of the desired Y -Z plane trajectory to be flown for evaluation of the learned models. Shown
here are the first (accelerating from A to B) and third (decelerating from B to A) segments of the trajectory with the
indicated speed profile. The middle segment (not shown) is a complete figure-eight maneuver that overlaps with the
above path. The actual reference state/control trajectories for each model are computed using trajectory optimization
where the cost to be minimized is a combination of control effort and the deviation from the desired figure-eight path
above. All computed trajectories, projected onto the Y -Z plane overlap with the desired figure-eight maneuver.

39



For each model tested, three trajectory optimization problems were solved corresponding to the
three segments, each with the same time-span of 10 s. The middle segment therefore represents
the most challenging and aggressive part of the trajectory, executed following the acceleration
segment. The planar tracking controller was set as the steady-state LQR controller computed from
the TV-LQR solution (to avoid having to additionally compute and store the true time-varying
gain solution from the backward Riccati differential equation).

Results: We present tracking results6 for all 4 models: (i) CCM-R N = 1000, (ii) R-R N = 1000,
(iii) CCM-R N = 150, and (iv) R-R N = 150. Figure 12 plots tracking errors for the N = 150 case
and Table 3 summarizes the tracking performance for all models in terms of RMS and maximum
translational tracking errors. The quadrotor is unable to track the R-R N = 150 model generated
trajectory and quickly becomes unstable as it accelerates into the middle segment of the trajectory.
A human pilot needed to take control just as the quadrotor crashed into the ground. At the point
of the takeover, the net Y tracking error was approximately 1.5 m.

Figure 12: Visualization of tracking results for the learned models CCM-R N = 150 (left column) and R-R N = 150
(right column). The top row shows the desired and actual trajectory traces in the inertial Y -Z plane, while the
middle row shows the error over time in the inertial X, Y , and Z coordinates. The quadrotor is unable to track the
R-R N = 150 model generated trajectory and quickly becomes unstable as it accelerates into the middle segment of
the trajectory. A human pilot needed to take control just as the quadrotor crashed into the ground. At the point
of the takeover, the net Y tracking error was 1.5 m. Tracking the CCM-R N = 150 model generated trajectory, the
quadrotor achieves bounded tracking errors and successfully completes the trajectory. The bottom row shows the
pitch and yaw angles over time, which remain close to zero, thereby ensuring our planar motion assumption is valid.

6Videos of the flight experiments can be found at https://youtu.be/SK1tsYrXXUY.

40

https://youtu.be/SK1tsYrXXUY


In contrast, while the tracking performance for the CCM-R model is rather far from what
could be achieved with an accurate model, all errors remain bounded. There is a point where the
quadrotor grazes the ground as it passes through the fastest part of the middle segment, traveling
downwards. The margin of error (distance between the lowest point on the trajectory and the
ground) is 15 cm, which is a challenging tracking constraint to meet for a quadrotor operating
using a model trained with just 150 samples of supervision. Despite this, the quadrotor recovers
and successfully completes the remaining portion of the trajectory. Figure 1 shows a time-lapse of
the quadrotors during this middle segment of the maneuver.

From Table 3, as expected for the N = 1000 case, the tracking numbers for CCM-R and R-R
are on par, with remaining differences at the noise level. For the N = 150 case, we only present
numerics up until 14 s, which is when the R-R case crashes. For this range, CCM-R significantly
outperforms R-R, let alone the fact that the quadrotor operating with the CCM-R model manages
to complete the entire 30 s trajectory while maintaining stability. The results confirm the trend
observed within simulations that, at low sample regimes, the stabilizability constraints enforced
during the CCM-R model learning process have a dramatic context-driven regularization effect.

CCM-R N = 1000 R-R N = 1000 CCM-R N = 150 R-R N = 150

Error RMS Max. RMS Max. RMS Max. RMS Max.

Y 0.150 0.445 0.126 0.290 0.208 0.567 0.423 1.618
Z 0.066 0.167 0.076 0.196 0.047 0.090 0.068 0.157
Net 0.165 0.446 0.148 0.308 0.213 0.570 0.429 1.623

Table 3: Numerical tracking results for all learned models. These include both root mean square (RMS) and maximum
error values (in meters) over the entire trajectory. At N = 1000 training points, both the CCM-R and R-R models
yield similar tracking performance with remaining differences at the noise level. The tracking numbers for N = 150
are presented up until 14 s, which is when the crash occured with the R-R model. CCM-R clearly outperforms R-R
during those first 14 s, let alone the fact that the quadrotor operating with the CCM-R model successfully completes
the entire 30 s trajectory while maintaining bounded errors.

9 Conclusions and Future Work

We presented a framework for learning controlled dynamics from demonstrations for the purpose
of trajectory optimization and control for continuous robotic tasks. By leveraging tools from non-
linear control theory, chiefly, contraction theory, we introduced the concept of learning stabilizable
dynamics, a notion which guarantees the existence of feedback controllers for the learned dynam-
ics model that ensures trajectory trackability. Borrowing tools from reproducing kernel Hilbert
spaces and convex optimization, we proposed a bi-convex semi-supervised algorithm for learning
the dynamics, and provided a substantial numerical study of its performance and comparison with
traditional regression techniques. In particular, we validated the algorithm in simulations for a pla-
nar quadrotor system, and on a full quadrotor hardware testbed with partially closed control loops
to emulate planar quadrotor dynamics. The results lend credence to the hypothesis that enforcing
stabilizability constraints during the learning process can have a dramatic regularization effect on
the learned dynamics in a manner that is tailored to the downstream task of trajectory generation
and feedback control. This effect is most apparent when learning from small supervised training
datasets, where we showed, both in simulation and on hardware, the quadrotor losing control and

41



crashing when using a model learned with traditional ridge-regression. In contrast, the quadrotor is
able to maintain bounded tracking performance when using the stabilizability regularized model in
the low sample regime, and is on par with the ridge regularized model in the large sample regime.

9.1 Challenges and Extensions

There are several exciting future directions that we would like to pursue, categorized below.

Multi-Step Error: An immediate theoretically sound extension of this work to incorporate multi-
step regression error would be to integrate the nonlinear features and the control signal in time
by leveraging the linearity in parameters of the estimated model. This would result in an inner-
product between time-varying features and the parameters, thereby retaining linearity in parame-
ters, with the supervisory signal now being state samples along the trajectory, as opposed to the
time-derivative of the state. A similar transformation is central to composite adaptive control for
robotic systems (Slotine and Li, 1989; Wensing and Slotine, 2018). While such a transformation
would require the full control time signal for each sampled trajectory (as opposed to state-control
samples), it eliminates the need for numerical estimation of the state time-derivative along the
trajectory, thereby improving the signal-to-noise ratio.

Leveraging Model Priors: The problem studied in this work concerned learning the full dy-
namics model from scratch. However, one can often leverage physics-based modeling to form a
baseline, reducing the role of learning to estimate the residual dynamics. Instead of adopting an
additive error formulation as is common in the literature, a variation of contraction theory – partial
contraction (Wang and Slotine, 2005) – may be utilized to smoothly interpolate between the prior
model and the model learned from data using an auxiliary dynamical system, termed the “virtual
dynamics.” This system has the special property in that the prior model and the learned model are
both particular solutions to the virtual dynamics. Using similar stabilizability constraints, one can
construct a model and feedback controller that forces the solution of the learned dynamics model
(representing the true dynamics) to converge exponentially to the solution of the prior model, which
can be designed to satisfy desirable performance criteria.

Notion of Stabilizability: The form of control-theoretic regularization employed in this work
was founded upon conditions for exponential stabilizability of smooth systems via state feedback.
It is currently unknown what the algorithm would produce for systems that are not inherently
stabilizable or at least not globally exponentially stabilizable. As the stabilizability condition is
approximated with sampling in our approach, thereby playing the role of a regularizer, we anticipate
that the most probable cause of algorithm termination would be a stall, with the resulting model
likely satisfying the stabilizability conditions in regions of the state-space where the true system is
also stabilizable. In all other regions, the model would simply accrue non-zero slack penalty. The
implications for resulting task performance is an area that merits further study.

More broadly, it is of interest to investigate not only other, more general forms of stabilizability
(e.g., boundedness), but also extend the analysis to hybrid mechanical systems. This would enable
tackling more challenging problems within the manipulation and locomotion domains where prior
models can be severely inaccurate due to the complexity of modeling contact physics.

Computational and Experimental: By far the largest hurdle in being able to extend our
algorithm to higher-dimensional systems (e.g., visual and contact domains) lies in addressing the
LMI constraints. There are three key approaches that may be used to address this challenge. The

42



first involves leveraging distributed optimization techniques such as ADMM (Boyd et al., 2011)
to distribute and parallelize the constraints (which are encoded within the cost in sum-separable
form). A second approach is to collapse the pointwise LMI constraints into a single LMI that is the
weighted average of all the Fλ matrices, where the weighting scales with the maximum eigenvalue
of each of the Fλ matrices. This is a non-convex constraint that can be solved using alternation
by fixing the weights from the previous iteration. Indeed, this is equivalent to re-writing all the
LMI constraints in Lagrangian form and performing primal-dual descent on the complementarity
condition. While the above methods can allow scaling in terms of number of constraint points, in
order to scale with respect to problem dimensionality, one must resort to first-order unconstrained
gradient descent methods, where non-degeneracy in the contraction metric can be achieved by
parameterizing the dual metric W in Cholesky form LLT . This opens the possibility of using more
expressive function approximators such as deep-neural-networks, albeit, at the expense of a fully
non-convex formulation.

We believe that the dynamics learning framework presented in this work provides compelling
motivation from both a stability and data efficiency standpoint, for incorporating control-theoretic
notions within learning as a means of context-driven hypothesis pruning.

References

Amos B, Rodriguez IDJ, Sacks J, Boots B and Kolter JZ (2018) Differentiable MPC for end-to-end
planning and control. In: Conf. on Neural Information Processing Systems.

Avron H, Sindhwani V, Yang J and Mahoney MW (2016) Quasi-Monte Carlo feature maps for
shift-invariant kernels. Journal of Machine Learning Research 17(120): 1–38.

Bansal S, Akametalu AK, Jiang FJ, Laine F and Tomlin CJ (2016) Learning quadrotor dynamics
using neural network for flight control. In: Proc. IEEE Conf. on Decision and Control.

Bansal S, Calandra R, Xiao T, Levine S and Tomlin CJ (2017) Goal-driven dynamics learning via
Bayesian optimization. In: Proc. IEEE Conf. on Decision and Control.

Berkenkamp F, Turchetta M, Schoellig A and Krause A (2017) Safe model-based reinforcement
learning with stability guarantees. In: Conf. on Neural Information Processing Systems.

Boyd S, Parikh N, Chu E, Peleato B, Eckstein J et al. (2011) Distributed optimization and statistical
learning via the alternating direction method of multipliers. Foundations and Trends in Machine
Learning 3(1): 1–122.

Brault R, Heinonen M and d’Alché Buc F (2016) Random Fourier features for operator-valued
kernels. In: Asian Conf. on Machine Learning. pp. 110–125.

Chebotar Y, Hausman K, Zhang M, Sukhatme G, Schaal S and Levine S (2017) Combining model-
based and model-free updates for trajectory-centric reinforcement learning. In: Int. Conf. on
Machine Learning.

Chua K, Calandra R, McAllister R and Levine S (2018) Deep reinforcement learning in a handful
of trials using probabilistic dynamics models. arXiv preprint arXiv:1805.12114 .

43



Crouch PE and van der Schaft AJ (1987) Variational and Hamiltonian Control Systems. Springer.

Cui R, Yang C, Li Y and Sharma S (2017) Adaptive neural network control of AUVs with con-
trol input nonlinearities using reinforcement learning. IEEE Transactions on Systems, Man, &
Cybernetics: Systems 47(6): 1019–1029.

D’Aspremont A and Karoui NE (2014) A stochastic smoothing algorithm for semidefinite program-
ming. SIAM Journal on Optimization 24(3): 1138–1177.

Dean S, Tu S, Matni N and Recht B (2019) Safely learning to control the constrained linear
quadratic regulator. In: American Control Conference. In press.

Deisenroth MP and Rasmussen CE (2011) PILCO: A model-based and data-efficient approach to
policy search. In: Int. Conf. on Machine Learning. pp. 465–472.

Fahroo F and Ross IM (2002) Direct trajectory optimization by a Chebyshev pseudospectral
method. AIAA Journal of Guidance, Control, and Dynamics 25(1): 160–166.

Finn C, Levine S and Abbeel P (2016) Guided cost learning: Deep inverse optimal control via
policy optimization. In: Int. Conf. on Machine Learning.

Fisac JF, Akametalu AK, Zeilinger MN, Kaynama S, Gillula J and Tomlin CJ (2017) A general
safety framework for learning-based control in uncertain robotic systems. Available at https:

//arxiv.org/abs/1705.01292.

Hearst MA, Dumais ST, Osuna E, Platt J and Scholkopf B (1998) Support vector machines. IEEE
Intelligent Systems and their Applications 13(4): 18–28.

Hettich R and Kortanek KO (1993) Semi-infinite programming: Theory, methods, and applications.
SIAM Review 35(3): 380–429.

Huang PS, Avron H, Sainath TN, Sindhwani V and Ramabhadran B (2014) Kernel methods match
deep neural networks on TIMIT. In: IEEE Int. Conf. on Acoustics, Speech and Signal Processing.
IEEE, pp. 205–209.

Kamthe S and Deisenroth MP (2018) Data-efficient reinforcement learning with probabilistic model
predictive control. In: AI & Statistics.

Khansari-Zadeh SM and Billard A (2011) Learning stable nonlinear dynamical systems with Gaus-
sian mixture models. IEEE Transactions on Robotics 27(5): 943–957.

Khansari-Zadeh SM and Khatib O (2017) Learning potential functions from human demonstrations
with encapsulated dynamic and compliant behaviors. Autonomous Robots 41(1): 45–69.

Kocijan J, Murray-Smith R, Rasmussen CE and Girard A (2004) Gaussian process model based
predictive control. In: American Control Conference.

Kurdila AJ and Zabarankin M (2006) Convex functional analysis. Birkhäuser Basel edition.
Springer Science & Business Media.

Lax P (2007) Linear Algebra and its Applications. 2 edition. John Wiley & Sons.

44

https://arxiv.org/abs/1705.01292
https://arxiv.org/abs/1705.01292


Lemme A, Neumann K, Reinhart RF and Steil JJ (2014) Neural learning of vector fields for encoding
stable dynamical systems. Neurocomputing 141(1): 3–14.

Levine S, Finn C, Darrell T and Abbeel P (2016) End-to-end training of deep visuomotor policies.
Journal of Machine Learning Research 17(1): 1–40.

Liang T and Rakhlin A (2018) Just interpolate: Kernel ridgeless regression can generalize. arXiv
preprint arXiv:1808.00387v1 .

Lohmiller W and Slotine JJE (1998) On contraction analysis for non-linear systems. Automatica
34(6): 683–696.

Manchester I, Tang JZ and Slotine JJE (2015) Unifying classical and optimization-based methods
for robot tracking control with control contraction metrics. In: Int. Symp. on Robotics Research.

Manchester IR and Slotine JJE (2017) Control contraction metrics: Convex and intrinsic criteria
for nonlinear feedback design. IEEE Transactions on Automatic Control In Press.

Manchester IR and Slotine JJE (2018) Robust control contraction metrics: A convex approach to
nonlinear state-feedback H∞ control. IEEE Control Systems Letters 2(2): 333–338.

Medina JR and Billard A (2017) Learning stable task sequences from demonstration with linear
parameter varying systems and hidden Markov models. In: Conf. on Robot Learning. pp. 175–
184.

Micheli M and Glaunés JA (2014) Matrix-valued kernels for shape deformation analysis. Geometry,
Imaging and Computing 1(1): 57–139.

Minh HQ (2016) Operator-valued Bochner theorem, Fourier feature maps for operator-valued ker-
nels, and vector-valued learning. arXiv preprint arXiv:1608.05639 .

Mohajerin N, Mozifian M and Waslander S (2019) Deep learning a quadrotor dynamic model for
multi-step prediction. In: Proc. IEEE Conf. on Robotics and Automation.

Nagabandi A, Kahn G, Fearing RS and Levine S (2017) Neural network dynamics for model-based
deep reinforcement learning with model-free fine-tuning. arXiv preprint arXiv:1708.02596 .

Ohnishi M, Wang L, Notomista G and Egerstedt M (2019) Barrier-certified adaptive reinforcement
learning with applications to brushbot navigation. IEEE Transactions on Robotics Early access.

Olfati-Saber R (2001) Nonlinear Control of Underactuated Mechanical Systems with Application to
Robotics and Aerospace Vehicles. PhD Thesis, Massachusetts Inst. of Technology.

Ostafew C, Schoellig AP and Barfoot TD (2016) Robust constrained learning-based NMPC enabling
reliable mobile robot path tracking. Int. Journal of Robotics Research 35(13): 1547–1563.

Overton ML and Womersley RS (1995) Second derivatives for optimizing eigenvalues of symmetric
matrices. SIAM Journal on Matrix Analysis and Applications 16(3): 697–718.

Polydoros AS and Nalpantidis L (2017) Survey of model-based reinforcement learning: Applications
on robotics. Journal of Intelligent & Robotic Systems 86(2): 153–173.

45



Punjani A and Abbeel P (2015) Deep learning helicopter dynamics models. In: Proc. IEEE Conf.
on Robotics and Automation.

Rahimi A and Recht B (2007) Random features for large-scale kernel machines. In: Conf. on Neural
Information Processing Systems. pp. 1177–1184.

Rahimi A and Recht B (2008) Uniform approximation of functions with random bases. In: Allerton
Conf. on Communications, Control and Computing. IEEE.

Ravichandar H, Salehi I and Dani A (2017) Learning partially contracting dynamical systems from
demonstrations. In: Conf. on Robot Learning.

Reyhanoglu M, van der Schaft A, McClamroch NH and Kolmanovsky I (1999) Dynamics and control
of a class of underactuated mechanical systems. IEEE Transactions on Automatic Control 44(9):
1663–1671.

Sanner RM and Slotine JJE (1992) Gaussian networks for direct adaptive control. IEEE Transac-
tions on Neural Networks 3(6): 837–863.

Scholköpf B and Smola AJ (2001) Learning with kernels: support vector machines, regularization,
optimization, and beyond. MIT Press.

Schwartz L (1964) Sous-espaces hilbertiens d’espaces vectoriels topologiques et noyaux associés
(noyaux reproduisants). Analyse Mathématique 13(1): 115–256.

Shi G, Shi X, O’Connell M, Yu R, Azizzadenesheli K, Anandkumar A, Yue Y and Chung S (2019)
Neural lander: Stable drone landing control using learned dynamics. In: Proc. IEEE Conf. on
Robotics and Automation.

Sindhwani V, Tu S and Khansari M (2018) Learning contracting vector fields for stable imitation
learning. arXiv preprint arXiv:1804.04878 .

Singh S, Majumdar A, Slotine JJE and Pavone M (2017) Robust online motion planning via con-
traction theory and convex optimization. In: Proc. IEEE Conf. on Robotics and Automation. Ex-
tended Version, Available at http://asl.stanford.edu/wp-content/papercite-data/pdf/

Singh.Majumdar.Slotine.Pavone.ICRA17.pdf.

Singh S, Sindhwani V, Slotine JJE and Pavone M (2018) Learning stabilizable dynamical systems
via control contraction metrics. In: Workshop on Algorithmic Foundations of Robotics.

Slotine JJE and Li W (1987) On the adaptive control of robot manipulators. Int. Journal of
Robotics Research 6(3): 49–59.

Slotine JJE and Li W (1989) Composite adaptive control of robot manipulators. Automatica 25(4):
509–519.

Spong MW (1998) Underactuated mechanical systems. In: Control Problems in Robotics and
Automation. Springer Berlin Heidelberg.

Taylor AJ, Dorobantu VD, Le HM, Yue Y and Ames AD (2019) Episodic learning with control
Lyapunov functions for uncertain robotic systems. Available at https://arxiv.org/abs/1903.
01577.

46

http://asl.stanford.edu/wp-content/papercite-data/pdf/Singh.Majumdar.Slotine.Pavone.ICRA17.pdf
http://asl.stanford.edu/wp-content/papercite-data/pdf/Singh.Majumdar.Slotine.Pavone.ICRA17.pdf
https://arxiv.org/abs/1903.01577
https://arxiv.org/abs/1903.01577


Thuruthel TG, Falotico E, Renda F and Laschi C (2019) Model-based reinforcement learning for
closed-loop dynamic control of soft robotic manipulators. IEEE Transactions on Robotics 35(1):
124–134.

Venkatraman A, Capobianco R, Pinto L, Hebert M, Nardi D and Bagnell A (2016) Improved
learning of dynamics models for control. In: Int. Symp. on Experimental Robotics. Springer, pp.
703–713.

Venkatraman A, Hebert M and Bagnell JA (2015) Improving multi-step prediction of learned time
series models. In: Proc. AAAI Conf. on Artificial Intelligence.

Wang W and Slotine JJE (2005) On partial contraction analysis for coupled nonlinear oscillators.
Biological Cybernetics 92(1): 38–53.

Wang YS, Matni N and Doyle JC (2019) A system level approach to controller synthesis. IEEE
Transactions on Automatic Control Early Access.

Wensing PW and Slotine JJ (2018) Cooperative adaptive control for cloud-based robotics. In: Proc.
IEEE Conf. on Robotics and Automation.

Zhang L, Wu SY and López MA (2010) A new exchange method for convex semi-infinite program-
ming. SIAM Journal on Optimization 20(6): 2959–2977.

Zhou DX (2008) Derivative reproducing properties for kernel methods in learning theory. Journal
of Computational and Applied Mathematics 220(1-2): 456–463.

Zhou S, Helwa MK and Schoellig AP (2017) Design of deep neural networks as add-on blocks for
improving impromptu trajectory tracking. In: Proc. IEEE Conf. on Decision and Control.

47



Appendix

A Solution Parameters for PVTOL

Notice that the true input matrix for the PVTOL system satisfies Assumption 1. Furthermore, it
is a constant matrix. Thus, the feature mapping Φb is therefore just a constant matrix with the
necessary sparsity structure.

The feature matrix for f was generated using the random matrix feature approximation to
the Gaussian separable matrix-valued kernel with σ = 6 and s = 8n = 48 sampled Gaussian
directions, yielding a feature mapping matrix Φf with df = 576 (96 features for each component
of f). The scalar-valued reproducing kernels for the entries of W were taken to be the Gaussian
kernel with σ = 15. To satisfy condition (12), the kernel for wij , (i, j) ∈ {1, . . . , (n−m)} was only
a function of the first n −m components of x. A total of s = 36 Gaussian samples were taken to
yield feature vectors φw and φ̂w of dimension dw = 72. Furthermore, by symmetry of W (x) only
n(n+ 1)/2 functions were actually parameterized. Thus, the learning problem in (22) comprised of
df + dwn(n+ 1)/2 + 4 = 2092 parameters for the functions, plus the extra scalar constants w,w.

The learning parameters used were: model N-R (all N): µf = 0, µb = 10−6, R-R (all N):
µf = 10−4, µb = 10−6, CCM-R (all N): µf = 10−3, µb = 10−6; N ∈ {100, 250, 500} : µw = 10−3,
N = 1000 : µw = 10−4. Note that a small penalization on µb was necessary for all models due to
the fact that feature matrix Φb is rank deficient. Contraction rate: λ = 0.1. Tolerance parameters:
constraints: {ελ, δw, εw} = {0.1, 0.1, 0.1}; discard tolerance δ = 0.05. Note that the tolerance
parameters have little effect on the resulting model since the stability conditions are homogenous
in W (x).

B CCM Controller Synthesis

Let Γ(p, q) be the set of smooth curves c : [0, 1] → X satisfying c(0) = p, c(1) = q, and define
δc(s) := ∂c(s)/∂s. At each time t, given the nominal state/control pair (x∗, u∗) and current actual
state x:

1. Compute a curve γ ∈ Γ(x∗, x) defined by:

γ ∈ argmin
c∈Γ(x∗,x)

∫ 1

0
δc(s)

TM(c(s))δc(s)ds, (40)

and let E denote the minimal value.

2. Define:

Ed(k) :=2δγ(1)TM(x)(f(x) +B(x)(u∗ + k))

− 2δγ(0)TM(x∗)(f(x∗) +B(x∗)u∗).
(41)

3. Choose k(x∗, x) to be any element of the set:

K := {k : Ed(k) ≤ −2λE} . (42)

48



By existence of a CCM M(x) (equivalently, its dual W (x)), the set K is always non-empty.
The resulting k(x∗, x) then ensures that the solution x(t) indeed converges towards x∗(t) exponen-
tially (Singh et al., 2017).

From an implementation perspective, note that having obtained the curve γ, constraint (42)
is simply a linear inequality in k. Thus, one can analytically compute a feasible feedback control
value, e.g., by searching for the smallest (in any norm) element of K; for additional details, we refer
the reader to (Manchester and Slotine, 2017; Singh et al., 2017). This controller was not used for
the CCM-R experiments in this paper however since the contraction conditions are only enforced
at the discrete sampled constraint set, as opposed to over the continuous state space X .

49


	1 Introduction
	2 Problem Formulation and Solution Methodology
	2.1 Motivating Example
	2.1.1 Solution Parameterization
	2.1.2 Evaluation
	2.1.3 Effect of Regularization


	3 Review of Contraction Theory
	3.1 Control Contraction Metrics

	4 CCM Constrained Dynamics Learning
	5 CCM Regularized Dynamics Learning
	5.1 Sparsity of Input Matrix
	5.2 Finite-dimensional Optimization

	6 Derivation of Problem (22)
	6.1 Reproducing Kernel Hilbert Spaces
	6.2 Dynamics Sub-Problem
	6.3 Metric Sub-Problem
	6.4 Approximation via Random Matrix Features

	7 Solution Algorithm
	7.1 Solving the Upper Bound Sub-Problem
	7.2 Revisiting PVTOL

	8 Validation on Quadrotor Testbed
	8.1 Model Training
	8.2 Out-of-Plane Control for Enabling Evaluation
	8.3 Evaluation

	9 Conclusions and Future Work
	9.1 Challenges and Extensions

	A Solution Parameters for PVTOL
	B CCM Controller Synthesis

